ARZUMAN HƏSƏNOV

NANOSİSTEMLƏRİN RİYAZİ MODELLƏŞDİRİLMƏSİ VƏ KOMPÜTER HESABLANMASI

Bakı - 2013

Prof., f.e.d. M. Ə. Ramazanov

RƏYÇİLƏR:

Dos., f.-r.e.n. F.H.Paşayev Dos., b.e.n. I.S.Əhmədov Dos., f.-r.e.n. M.S.Xəlilov

Həsənov Arzuman Qardaşxan oğlu. Nanosistemlərin riyazi modelləşdirilməsi və kompüter hesablanması. Bakı, "Ləman nəşriyyat poliqrafiya" MMC, 2013, 237 s., I nəşr.

Kitabdan ali məktəblərin nanotexnologiya sahəsi üzrə ixtisaslaşan bakalavr və magistr pillələrində təhsil alan tələbələr, doktorantlar və nanotexnologiya sahəsində çalışan elmi işçilər istifadə edə bilər. Kitabda nanosistemlərin modelləşdirilməsi metodları, kompüter proqramları, modelləri, kompüterdə hesablanması, tədqiqi və alınmış nəticələr şərh olunmuşdur.

 $H\frac{170200000-160}{2013}$

© A.Q.Həsənov, 2013

MÜNDƏRİCAT

ÖN SÖZ	.6
GİRİŞ	8
I FƏSİL. NANOSISTEMLƏRİN MODELLƏŞDİRİLMƏ METODLARI	Sİ 12
 Nanosistemlərin əmələ gəlməsi və böyüəsinin modelləri1 Kvant səviyyəsində nanosistemlərin modelləşdirilməsi2 Sıxlıq funksionalı metoduna əsaslanan modelləşdirmə3 Molekulyar dinamika metoduna əsaslanan 	12 26 31
modelləşdirmə	36
5. Yarımemprik metodlara əsaslanan modelləşdirmə4	1
II FƏSİL, NANOSİSTEMLƏRİN KOMPÜTER	
PROQRAMLARI	47
6. Vizual proqramlaşdırma riyazi modelin kompüterdə	
realizasiyasi üçün əsas vasitə kimi4	F7
7. Nanosistemlərin modelləşdırılməsinin əsas tipləri	57
8. Mathcad proqramı6	56
9. HyperChem proqrami7	73
10. NanoEngineer-1 proqramı8	39
11. Yarım-empirik kvantmexaniki proqram	92
12. Bəzi nanohissəciklərin və nanosistemlərin vizual	
modelləri10	01
III FƏSİL. NANOSİSTEMLƏRİN KOMPÜTERD	ь Э
HESABLANMASI VƏ TƏDQİQİ11	13

13.	Polietilen (PE), Polipropilen(PP) və Poliviniliden
	fluorid(PVDF) kompozitlərin modelləşdirilməsi və
	qeyriemprik metod ilə tədqiqi113
14.	Qızıl nanohissəciyi və onun nanokopozisiyalarının
	modelləşdirilməsi və Genişləniş Hükkel metodu ilə
	tədajaj
15	Orzil nanohissacivinin varim-empirik metodla tadaiai 124
16	Gümüs nanohissəciyi və onun nanokompozisiyalarının
10.	kvantmexaniki tadajaj
17	Domir papohissocivi vo opun papokopozisivalarinin
17.	luontmovonilii tadajaj
10	Kvanunexaniki təuqiqi
18.	Həcmə mərkəzləşmiş dəmir nanonissəciyi və onun
10	nanokopozisiyalarinin kvantmexaniki tədqiqi146
19.	Aliminum nanohissəciyi və onun nanokompozisiyalarının
	modelləşdirilməsi və sixliq funksionali nəzəriyyəsi metodu
	ilə tədqiqi154
20.	Silisium nanohissəciyinin modelləşdirilməsi və compüter
	tədqiqi161
21.	Füllerenin modelləşdirilməsi, qeyriemprik və molekulyar
	dinamika metodu tədqiqi164
22.	Qrafenin modelləşdirilməsi, qeyriempirik və molekulyar
	dinamika metodları ilə tədqiqi168
23.	DNT-nin modelləşdirilməsi və tədqiqi178
24.	Fe ₃ O ₄ nanohissəcivin modelləsdirilməsi, gevriempirik və
	SFN metodları ilə tədqiqi
25.	ZnS nanohissecivi ve onun nanokompozisivalarının
-0.	modellasdirilmasi va tadajaj
26	Sirkonim dioksid nanohissocivi vo onun
20.	nanokompozisiwalarinin modellasdirilmasi va tadajaj 100
07	$\int \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt$
27.	Qizil sulfid $(Au_2S)_{22}$ nanohissəciyi və onun $(Au_2S)_{22}$ +PP,
	$(Au_2S)_{22}$ +PVDF nanokompozisiyalarinin modelləşdiril-
	məsi və tədqiqi208

28.	Plumbum sulfid (PbS) ₈ nanohissəciyi və	o onun $(PbS)_8 + PP$,
	$(PbS)_8 + PVDF$ nanokompozisiyalarinin	modelləşdirilməsi
	və tədqiqi	
ƏD	ӘВІҮҮАТ	230

Məlumdur ki, nanotexnologiya 0,1-100nm ölçülu hissəciklərdə və quruluşlarda baş verən fiziki, kimyəvi və bioloji hadisələrin yaratdığı təsirləri öyrənir. Bu elmi-texniki istiqamətin əsasını yeni nanoquruluşlu materialların alınması, tədqiqi və tətbiqi təşkil edir. Belə kiçikölçülü tədqiqat aləmi riyaziyyat və kompüter texnologiyası üçün maraqlı tətbiqi sahədir. Bu istiqamətdə tədqiqatlar nanometr, yəni metrin milyardda biri səviyyəsində aparılır və alimlər üçün yeni problemlər qarşıya qoyur.

Məlumdur ki, tədqiq olunan obyektlərin ölçüləri kiçildikcə onların fiziki və kimyəvi xassələri kəskin dəyişir. Fiziki və kimyəvi xassələrin nanoölçülü sistemlərdə kəskin olaraq dəyişməsi bu cür materialların texnikanın müxtəlif sahələrində tətbiqinə imkan yaradır. Unikal xassələrə malik nanoquruluşların formalaşması yeni metodların və vasitələrin istifadəsi tələblərini qarşıya qoyur. Alınacaq yeni nanoölçülü quruluşun dayanıqlı olmasını, fiziki və kimyəvi xassələrini əvvəlcədən müəyyən etmək üçün ilk növbədə obyektin riyazi vizual modelinin qurulması, hazırkı mövcud metodların tətbiqi, inkişaf etdirilməsi və kompüter hesablamalarının aparılmasını və yeni kompüter proqramlarının hazırlanmasını zəruri edir.

Hal hazırda nanotexnologiyada riyazi modelləşdirmənin vizual, hesablama və mühəndis kompüter modelləşdirməsi istifadə olunur. Bu dərslik təhsilin bakalavr və magistr pilləsində təhsil alan tələbələr tərəfindən nanoölçülü quruluşların öyrənilməsi, nanoölçülü sistemlər haqqında ilkin təsəvvürün formalaşmasına və nanomaterialların tədqiqi istiqamətində ilkin nəzəri təsəvvürlərin yaranmasına kömək edən əvəzsiz vasitədir. Dərsliyin hazırlanmasında tələbələrə oxuduğum mühazirə, apardığım məşğələ dərslər, çoxillik elmitədqiqat işlərimin bəzi nəticələrindən istifadə olunmuşdur.

"Nanosistemlərin riyazi modelləşdirilməsi və kompüter hesablanması" kitabı ana dilində yazılmış ilk kitab olduğu üçün qüsurların olacağına şübhə etmirəm. Buna görə də irad və təkliflərini göndərənlərə öz minnətdarlığımı əvvəlcədən bildirirəm. Mənə mənəvi kömək etmiş iş yoldaşlarıma təşəkkür edir, yüksək səviyyədə yaradılmış iş şəratinə görə fizika fakültəsi və BDU - nun rəhbərliyinə dərin minnətdarlığımı bildirirəm.

MÜƏLLİFLƏ ƏLAQƏ

Tel.:(99412) 5387217(iş), Mobil:(99470) 7157236Veb səhifə:http://nanomaterials.bsu.edu.azE-mail:http://nanomaterials.bsu.edu.azSkype:http://nanomaterials.bsu.edu.az

GİRİŞ

Müasir dövrdə riyazi modelləsdirmə təhsil və elmin müxtəlif sahələrində geniş tətbiq olunur. Bu metodun ideyası ondan ibarətdir ki, ilkin obyekt obrazı ilə riyazi modellə əvəz olunur və bu modelin öyrənilməsi kompüterlərdə reallaşmış hesablama - məntiq alqoritmlər əsasında hazırlanmış program vasitəsilə aparılır. Riyazi model həm nəzəri, həm də təcrübi faktların əsas cəhətlərini özündə birləşdirir. Obyektin modeli ilə işləməklə, onun xassələrini və özünü necə aparmasını nəzəri cəhətdən öyrənmk olar. Bununla bərabər müasir hesablama informasiya texnologiyalarının və model vasitəsilə obyekti dərindən imkanları əsasında öyrənmək olar. Riyazi modelləsdirmənin elementlərindən vaxtdan istifadə varandığı dəqiq elmlər olunmağa başlanılmışdır. Təsadüfi deyil ki, "alqoritm" sözü məşhur orta əsr türk mənşəli alim Əl-Xorezmin adından yaranmışdır. Riyazi modelləşdirmənin əsas inkişafı XX əsrin 40-cı illərin sonu 50-ci illərin əvvəllərinə təsadüf edir. Bu birinci növbədə kompüterlərin yaranması, keçmiş SSRİ və ABS programlarının raket-nüvə dövlətlərin milli verinə vetirilməsinin ənənəvi üsullarla mümkün olmadığı ilə Həmin illərdə riyazi modelləşdirmə əlaqədar idi. bu məsələlərin yerinə yetirilməsində əvəzsiz rol oynamışdır.

- hazırda elmin bütün Hal sahələrinə riyazi tətbiq olunur. Buna görə də modelləsdirmə riyazi modelləşdirmə elmi - texniki tərəqqinin əsas zəruri tərkib obyektin hissəsi hesb olunur. Hər hansı rivazi modelləşdirilməsi məsələsinin hərəkət qoyuluşu dəqiq planının yaranmasına səbəb olur. Bunu sərti olaraq üç mərhələyə ayırmaq olar:

Model - alqoritm - proqram (Səkil 1). Birinci mərhələdə obyektin əsas xassə və qanunlarını özündə əks etdirən riyazi model - obyektin ekvivalenti seçilir. Bu zaman ilk növbədə nanoölçülü obyekti tədqiqi etmək üçün onun nəzəri modelinin qurulması vacibdir. Nəzəri modelin qurulması isə il növbədə nano obyektin öçüsünün və ona daxil olan atomların sayının təyin etmək lazımdır. Beləliklə nano obyektin ölçüsü və ona daxil olan atomların sayı bilərək təqribi nəzəri modelini qurmaq olar. Riyazi model nəzəri metodlarla tədqiq olunaraq obyekt haqqında əvvəlcədən mühüm biliklər əldə etməyə imkan verir.

İkinci mərhələdə riyazi modelin kompüterdə reallaşması üçün alqoritm işlənib hazırlanır. Riyazi model elə formada təqdim olunmalıdır ki, ədədi üsulları tətbiq etmək mümkün olsun.

Hesablama və məntiqi əməllərin yerinə yetirilmə müəyyənləşdirilir kəmiyyətlərin ardıcıllığı elə ki. qiymətlərini verilmiş dəqiqliklə hesablamaq mümkün olsun. Bu zaman hesablama alqoritmi modelin əsas xassələrini təhrif etməyib və deməli obyektin kompüter vasitəsilə tədqiq iqtisadi səmərəli olunması cəhətdən və adaptasiyası olunmasına imkan verməlidir.

Üçüncü mərhələdə hazirlanmış model əsasında yaradılmış alqoritmi kompüter dilinə çevirərək kompüter proqramı hazırlanır. Proqramın hazırlanmasına iqtisadi cəhətdən səmərəli və adaptasiyası olunması tələbləri qoyulur. Kompüter proqramı öyrənilən obyektin elektron variantı olub kompüterdə bilavasitə təcrübə aparmaq üçündür.

Şəkil 1. Riyazi modelləşdirmənin mərhələləri

Model - algoritm - program üçlüyü yaratdıqdan sonra tədqiqatçı universal, vığcam alət əldə edərək sinaq voxlamalarını aparır. Bundan sonra model - alqoritm - proqram üçlüyünün ilkin obyektə uyğunluğuna əmin olunduqdan sonra, model vasitəsilə müxtəlif və çoxsaylı hesablamalar apararaq obyektin quruluş və xassələrini xarakterizə edən kəmiyyət və keyfiyyət parametrləri tapılır. Model - alqoritm - program üçlüyünün təkmilləşdirilməsi və dəqiqləşdirilməsi bütün modelləşdirmə prosesi zamanı müşayiət olunur. Riyazi modelləşdirmə riyaziyyat, fizika, kimya və biologiya elmləri arasında sintez rolunu oynayır və bunun səmərəliliyi aşağıdakı amillərlə bağlıdır:

Əsas anlayışların və tələblərin dəqiq formula edilməsi; İstifadə olunan modellərin təcrübəyə əsaslanan adekvatlığı; Hesablama alqoritmlərinin dəqiqliyi və s.

Məlumdur ki, məhsulun istehsalı prosesində həyata material və va varım fabrıkatın forma kecirilən və xüsusiyyətlərini dəyisməsi, hazırlanması və işlənməsi üçün olunan metodlar yığımına texnologiya istifadə adlanır. Nanotexnologiyada riyazi modelləşdirmənin tətbiq olunmasının əsas xüsusiyyət ondan ibarətdir ki, baxılan proseslər nanometr, 1nm - 100nm fəza diapozon masştabında həyata keçirilir. Molekul və atomun ölçüləri 10 nanometr tərtibindədir. Nanometr diapozonda material hazırlamaq üçün istifadə olunan material ayrıca atom, molekul və molekulyar sistemlərdir. Nanotexnologiya üçün fərdi yanaşma xarakterik olub, atom və molekulları idarə edərək prinsipial yeni defektsiz fiziki-kimyəvi və bioloji xassələrə malik yeni material və nanometr öçülərə malik yeni qurğular yaratmaq olar.

Nanotexnologiya müxtəlif elmlər arası fənn olub yeni molekullar, nanoquruluşlar, nanoqurğular və xüsusi fiziki, kimyəvi və bioloji xassələrə malik materialların yaradarkən ayrıca atom, molekul, molekulyar sistemlərin nanometr fəza ölçülərində fiziki, kimyəvi və bioloji proseslərin qanunauyğunluqlarını öyrənən elmdir. Nanotexnologiya mühüm istiqamətləri aşağıdakılardır:

Yeni molekulların sintezi. Yüksək keçiriciliyə malik möhkəm, defektsiz materialların yaradılması.

Tunel və atom-qüvvə, maqnit-qüvvə mikroskoplarının, molekulyar dizayn üçün çoxiynəli zond sistemlərin, minatur yüksək həssaslığa malik vericilərin, nanorobotların hazırlanması.

Yeni nəsil kompüterlərin nanoölçülü element bazasının, nanonaqillərin, nanotranzistorların, nanoakustik sistemlərin yaradılması.

Nanolazerlərin, çoxiynəli nanolazer sistemlərin yaradılması, tibb sahəsində virusların məhv edilməsi üçün nanoalətlərin proyektləşdirilməsi, insan orqanların lokal təmiri, canlı orqanizmlərin təyin olunmuş yerlərinə yüksək dəqiqliklə dərman preperatların çatdırılması. Uzun ömürlülüyün həyata keçirilməsi və s. problemləri.

Kosmik fəzanın öyrənilməsi üçün kosmik liftin yaradılmasında qarşıya çıxan problemlər.

Zərrəciklərin nano sürətləndiricilərinin yaradılması və nüvə reaksiyaların idarə olunması.

Beləliklə yuxarida qeyd olunmuş əsas istiqamətlərin reallaşdırılması proseslərində riyazi və kompüter modelləşdirmənin tətbiqi zəruri olduğu aydındır.

I FƏSİL. NANOSİSTEMLƏRİN MODELLƏŞDİRİLMƏSİ METODLARI

1. Nanosistemlərin əmələ gəlməsi və böyüəsinin modelləri

Dayanıqlı hal

Termodinamikadan məlumdur ki, T temperatura və P təzyiqə malik sistem Qips enerjisinin minimal qiymətinə uyğun vəziyyətə keçməyə cəhd edir:

G=H-TS=U+PV-TS (1.1) burada H - entalpiya, U - sistemin daxili enerjisi, V - həcm, S entropiyadır. Bu o deməkdir ki, sistemdə verilmiş vəziyyətdən G - Qips enerjisinin minimal qiymətinə uyğun vəziyyətə keçməyə yönəlmiş prosesslər üstünlük təşkil edir. Sərbəst Gips eneryisinin minimal qiymətinə uyğun vəziyyət sistemin dayanaqli tarazliq vəziyyəti adlanır(Şəkil 1.1).

N atomda ibarət sistemə baxaq. Fərz edək ki, g^L adi halda, g^S isə nanoquruluşda(məsələn klasterdə) atomun malik olduğu Gips enerjisi olsun. Onda sistemin termodinamik potensialı ilkin vəziyyətdə Ng^L, nanoquruluş halında isə Ng^S olar. Tutaq ki, T_m kritik keçid temperatur olsun. Temperaturun T>T_m qiymətlərində Ng^L<Ng^S olarsa deməli ilkin vəziyyət sistemin dayanaqli vəziyyətidir. Temperaturun T<T_m qiymətlərində Ng^L>Ng^S olarsa deməli nanoquruluş (klaster) halı sistemin dayanaqli vəziyyəti olacaqdır. Əgər T=T_m qiymətində Ng^L = Ng^S olarsa sistem həm ilkin, həm də nanoquruluş(klaster) halında ola bilər.

N atomdan ibarət nanoquruluşun (klasterin) əmələgəlməsi hala baxaq. Bu zaman sitemin Gips enerjisi

vəziyyətə nəzərən dəyişməsi $\Delta G= (N-n)g^{L} + ng^{S}+A_{n}\sigma$ - $Ng^{L} = n(g^{S} - g^{L}) + A_{n}\sigma$. Beləliklə $\Delta G= n(g^{S} - g^{L}) + A_{n}\sigma$ (1.3)

 $\Delta G = n(g^{S} - g^{L}) + A_{n}\sigma \qquad (1.3)$ A_n σ - kəmiyyəti fazalararası səthin əmələgələsinə sərf olunan iş olub həmişə müsbətdir. A_n əmələgəlmiş nanoobyektin forma və ölçüsündən asılıdır. Səth sferik formadadırsa onda A_n üçün

aşaıdakı ifadəni alarıq:

$$A_{n} = 4 \cdot \pi R^{2} = \sqrt[3]{36\pi} \cdot \left(\frac{4}{3}\pi R^{3}\right)^{\frac{2}{3}} = \sqrt[3]{36\pi} \cdot V^{\frac{2}{3}} = \sqrt[3]{36\pi} \cdot \left(\frac{m}{\rho_{s}}\right)^{\frac{2}{3}} = \sqrt[3]{36\pi} \cdot \left(\frac{\nu M}{\rho_{s}}\right)^{\frac{2}{3}} = \sqrt[3]{36\pi} \cdot \left(\frac{M}{\rho_{s}} \cdot \frac{n}{N_{A}}\right)^{\frac{2}{3}} = \sqrt[3]{36\pi} \sqrt[3]{(M/(\rho_{s}N_{A}))^{2}} \sqrt[3]{n^{2}}}$$

Beləliklə

$$A_{n} = \sqrt[3]{36\pi} \sqrt[3]{(M/(\rho_{s}N_{A}))^{2}} \sqrt[3]{n^{2}}$$
(1.4)

burada M - molyar kütlə, ρ_s - sıxlıq, N_A - Avaqadro ədədidir.

Əmələgəlmiş nanoquruluşun səthindəki atomların n_k – kritik sayını tapmaq üçün $\frac{dG^{L+s}}{dn} = 0$ tənliyini həll etmək lazımdır. $\frac{d\left[(N-n)g^{L} + ng^{S} + A_{n}\sigma\right]}{dn} = 0, \quad -g^{L} + g^{S} + \sigma \frac{dA_{n}}{dn} = 0$ $\frac{dA_{n}}{dn} = \frac{d\left[(36\pi)^{\frac{1}{3}} \cdot \left(\frac{M}{\rho_{S}N_{A}}\right)^{\frac{2}{3}} \cdot n^{\frac{2}{3}}\right]}{dn} = \frac{2}{3} \cdot (36\pi)^{\frac{1}{3}} \cdot \left(\frac{M}{\rho_{S}N_{A}}\right)^{\frac{2}{3}} \cdot n^{-\frac{1}{3}}$ Onda $-g^{L} + g^{S} + \frac{2}{3} \cdot \sigma \cdot (36\pi)^{\frac{1}{3}} \cdot \left(\frac{M}{\rho_{S}N_{A}}\right)^{\frac{2}{3}} \cdot n^{-\frac{1}{3}} = 0$ $-g^{L} + g^{S} + \frac{2}{3} \cdot \sigma \cdot (36\pi)^{\frac{1}{3}} \cdot \left(\frac{M}{\rho_{S}N_{A}}\right)^{\frac{2}{3}} \cdot n^{-\frac{1}{3}} = 0$

$$n = \frac{\left(\frac{2}{3} \cdot \sigma \cdot (36\pi)^{\frac{1}{3}} \cdot \left(\frac{M}{\rho_s N_A}\right)^{\frac{2}{3}}\right)^3}{\left(g^L - g^S\right)^3} = \frac{\frac{8}{27} \cdot \sigma^3 \cdot (36\pi) \cdot \left(\frac{M}{\rho_s N_A}\right)^{\frac{2}{3}}}{\left(g^L - g^S\right)^3} = \frac{32\pi}{3} \cdot \left(\frac{M}{\rho_s N_A}\right)^2 \cdot \frac{\sigma^3}{\left(g^L - g^S\right)^3}$$
Noticeda

Nəticədə

$$n_{k} = \frac{32\pi}{3} \left(M / (\rho_{s} N_{A}) \right)^{2} \frac{\sigma^{3}}{\left(g^{L} - g^{S} \right)^{3}}$$
(1.5)

alarıq. Gips enerjisininin dəyişməsini hesablamaq üçün n_k hesablanmış qiymətini (1.3) düsturunda nəzərə alsaq, onda alarıq:

$$\Delta G = -\frac{32\pi}{3} (M / (\rho_s N_A))^2 \frac{\sigma^3}{(g^L - g^S)^2} + 16\pi \cdot (M / (\rho_s N_A))^2 \frac{\sigma^3}{(g^L - g^S)^2}$$

Nəticədə

$$\Delta G_{k} = \frac{16\pi}{3} \left(M / (\rho_{s} N_{A}) \right)^{2} \frac{\sigma^{3}}{\left(g^{L} - g^{S} \right)^{2}} (1.6)$$

(1.5) və (1.6) düsturlarında Gips enerjisi bir atom üçün hesablanmışdır. Gips enerjisinin 1 mol qiymətləri üçün isə (1.5) və (1.6) düsturları aşağıdakı kimidir:

$$n_{k} = \frac{32\pi}{3} \left(M / (\rho_{s} N_{A}) \right)^{2} \frac{\sigma^{3} N_{A}}{\left(G^{L} - G^{S} \right)^{3}}$$
(1.7)

$$\Delta G_k = \frac{16\pi}{3} \left(M / \rho_s \right)^2 \frac{\sigma^3}{\left(G^L - G^S \right)^2} \tag{1.8}$$

burada G^L və G^S - sistemin ilkin və klaster vəziyyətlərinə uyğun Gips enerjisinin molyar qiymətləridir.

Adətən əmələgəlmiş nanoölçülü obyektin əsas parametri kimi atomların sayı ilə deyil, onun ölçüləri ilə xarakterizə olunur. Bu zaman əmələgəlmiş nanoölçülü obyekt sfera formasında fərz olunur. Bu halda Gips enerjisinin dəyişməsi ∆G aşağıdakı kimidir:

$$\Delta G = \frac{4}{3}\pi r^3 \left(G_V^s - G_V^L \right) + 4\pi r^2 \sigma \tag{1.9}$$

burada G_V^L və G_V^S -sistemin vahid həcmdə adi və klaster vəziyyətlərinə uyğun Gips enerjisinin qiymətləridir. Molyar qiymətlərlə əlaqə aşağıdakı kimidir:

$$G_V^L = G^L \frac{\rho_L}{M}, \ G_V^S = G^S \frac{\rho_S}{M}$$

burada ρ_L və ρ_s maddənin adı və klaster vəziyyətlərinə uyğun sıxlığı, M - molyar kütlədir. Əmələgəlmiş nanoölçülü obyektin kritik r_k ölçüsünü tapmaq üçün (1.9) düsturuna əsasən $\frac{d\Delta G}{dr} = 0$ tənliyini həll etmək lazımdır. $\frac{d\Delta G}{dr} = \frac{d\left(\frac{4}{3}\pi r^3 (G_V^s - G_V^L) + 4\pi r^2 \sigma\right)}{dr} =$ $= 4\pi r^2 (G_V^s - G_V^L) + 8\pi r \sigma$ $4\pi r^2 (G_V^s - G_V^L) + 8\pi r \sigma = 0, r \cdot (4\pi r (G_V^s - G_V^L) + 8\pi \sigma) = 0,$

 $4\pi r \left(G_V^s - G_V^L \right) + 8\pi \sigma = 0$. Buradan $r = \frac{2\sigma}{G_V^L - G_V^S}$ alarıq.

Nəticədə

$$r_k = \frac{2\sigma}{G_V^L - G_V^S} \tag{1.10}$$

və $\Delta G(r_k)$ qiymətini hesablamaq üçün r_k nın qiymətini (1.9) düsturunda nəzərə alaq. Onda alarıq

$$\Delta G = \frac{4}{3}\pi r^3 \left(G_V^s - G_V^L \right) + 4\pi r^2 \sigma = \frac{4}{3}\pi \left(\frac{2\sigma}{G_V^L - G_V^S} \right)^3 \cdot \left(G_V^s - G_V^L \right) + 4\pi \frac{2\sigma}{G_V^L - G_V^S}^2 \sigma = -\frac{32}{3}\pi \frac{\sigma^3}{\left(G_V^L - G_V^S \right)^2} + 16\pi \frac{\sigma^3}{\left(G_V^L - G_V^S \right)^2} = \frac{16\pi}{3} \frac{\sigma^3}{\left(G_V^L - G_V^S \right)^2}$$

Beləliklə

$$\Delta G(r_k) = \frac{16\pi}{3} \frac{\sigma^3}{(G_V^L - G_V^S)^2}$$
(1.11)

alarıq. Bundan əlavə əmələgəlmiş nanoölçülü obyektlərin tezliyini J, yəni vahid zaman ərzində vahid həcmdə əmələgəlmiş nanoölçülü obyektlərin sayını və onların əmələgəlməsı üçün lazım olan energijə uyğun olaraq ölçülərə görə paylanmasını N(n) hesablamaq olar:

$$J = (N_V D_L / a^2) EXP(-\Delta G_k / k_b T)$$
(1.12)
$$N(n) = N_1 EXP(-\Delta G(n) / k_b T)$$
(1.13)

burada Nv - ilkin fazada vahid həcmdəki atomların sayını, $D_L - \ddot{o}z$ -özünə diffuziya əmsalı, a - atomlararası orta məsafə, N₁ - vahid həcmdə tək, N(n) –isə vahid həcmdə n atomdan təşkil olunmuş nanoölçülü obyektlərin sayını göstərir.

Əmələ gəlmiş quruluşların sfera forması halında J hesablanması üçün aşağıdakı düstur istifadə olunur:

$$\Delta G_k = \frac{4}{3}\pi\sigma r_k^2$$

 $J = zN_V k_B T \Delta G_k / (\pi \sigma a^5 \eta) exp(-\Delta G_k / k_B T)$ (1.14)

burada z<1 empirik vuruq, η - dinamik özlülük əmsalıdır. Nanosistemlərin əmələgəlməsi prosesinə uyğun sərbəst Gips enerjisinin dəyişməsi qrafiki Şəkil 1.1-də verilmişdir.

 v) klasterlərin birləşməsi q) nanosistemlərin əmələgəlməsi

Tarazlıqda olmayan şəraitində nanoquruluşların əmələ gəlməsi və böyüəsinin modelləşdirilməsi

Nano obyektlərin əmələgəlməsi tezliyi və ölçülərə görə paylanması funksiyası üçün daha dəqiq ifadələr almaq olar. Bunun üçün tarazlıqda olmayan şəraitində prosesə baxaq. İlkin mühit müəyyən təsirlərə məruz qala bilər. Bu zaman nəzərə almaq lazımdır ki, yeni atomun qoşulması, sistemi yüksək enerjili vəziyyətdən yeni vəziyyətə keçirir. Eyni zamanda yeni yaranacaq nano obyektdən atomların ayrılması halı da mümkündür.

Əgər E_n ilə n atomdan təşkil olunmuş, E_1 ilə 1 atomdan təşkil olunmuş obyektləri işarə etsək. Onda nano quruluşların əmələ gəlməsi və böyüməsi prosesini aşağıdakı kimi təsəvvür etmək olar:

$$k_n^+$$

 $E_n + E_1 \leftrightarrow E_{n+1}, \ n = 1, 2, \dots$ (1.15)
 k_{n+1}^-

Burda k_n^+ və k_{n+1}^- uyğun olaraq 1 atomun E_n qoşulması və ondan ayrılması reaksiyaların sürətləridir. Zamandan t asılı olaraq E_n - dən əmələgəlmiş obyektlərin dəyişməsi kəmiyyəti

$$\frac{dZ(t)}{dt} = k_{n-1}^+ Z_{n-1}(t) - \left(k_n^- Z_n(t) + k_n^+ Z_n(t)\right) + k_{n+1}^- Z_{n+1}(t), \quad (1.16)$$

$$n = 1, 2, \dots, \infty$$

tənliyi ilə təyin oluna bilər. Vahid zaman ərzində E_n dən E_{n+1} əmələgəlmiş obyektlərin sayı ilə, əksinə E_{n+1} - dən E_n əmələgəlmiş obyektlərin sayı fərqini $J_n(t)$ ilə işarə edək. $J_n(t)$ - hesablanması üçün ədəbiyyatdan məlum aşağıdakı düstur istifadə olunur

$$J_n(t) = k_n^{-} Z_n(t) - k_{n+1}^{+} Z_{n+1}(t)$$
(1.17)

(1.16) tənliklər sistemi ixtiyari zaman anında əmələgəlmiş obyektlərin ölçülərə görə paylanmasını tapmağa imkan verir. Bunun üçün $Z_n(0)$ - əmələgəlmiş obyektlərin ölçülərə görə ilkin paylanması, sərhəd şərtləri, (1.16) tənliyinin əmsalları və səthdə yerləşməsi mümkün olan atomların sayı O_n verilməlidir. (1.16) tənliyinin əmsallarını, yəni atomların düzünə və əksinə keçmə reaksiya sürətlərini təyin etmək üçün elmi ədəbiyyatdan məlum olan aşağıdakı düsturlardan istifadə olunur:

$$k_n^+ = O_n v_L \exp\left(-\frac{\Delta_a g_n}{k_B T}\right) \exp\left(-\frac{\delta g_n}{2k_B T}\right)$$
(1.18)

$$k_{n+1}^{-} = O_n v_s \exp\left(-\frac{\Delta_a g_n}{k_B T}\right) \exp\left(\frac{\delta g_n}{2k_B T}\right)$$
(1.19)

burada $\Delta_a g_n = \Delta_a g + \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g_{n+1} = \Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$, $\Delta_a g - \frac{1}{2} \frac{\partial \Delta G(n)}{\partial n}$,

 $O_n = 4\sqrt[3]{n^2}$, v_L və v_s adi və nano obyekt halında atomların istilik rəqs tezlikləridir.

 k_n^+ və k_n^- məlum olduğunu, $v_L = v_L = v$ qəbul etsək onda $J_n(t)$ üçün alarıq:

$$J_{n}(t) = v \exp\left(-\frac{\Delta_{a} g_{n}}{k_{B}T}\right) \left(O_{n} Z_{n}(t) \exp\left(-\frac{\delta g_{n}}{k_{B}T}\right) - O_{n} Z_{n+1}(t) \exp\left(\frac{\delta g_{n}}{k_{B}T}\right)\right) (1.20)$$

 k_n^+ və k_n^- qiymətləri məlum olarsa belə, sərhəd şərtləri verilmədiyinə görə (1.16) tənliklər sistemini həll etmək mümkün deyildir. Sərhəd şərtlərinin verilməsi hal-hazırda nəzəri problem olaraq qalır. Buna görə də (1.16) tənliyini həll etmədən $J_n(t)$ qiymətləndirmək lazımdır.

Birinci yaxınlaşma olaraq fərz edirik ki, $J_n(t)$ zamandan asılı deyildir, yəni J=const=J(n*). Bundan əlavə dayanaqlı hala uyğun olaraq

$$k_{n}^{+} \operatorname{N}_{n} - k_{n+1}^{-} \operatorname{N}_{n+1} = 0 \quad \forall \Im \qquad O_{n} \operatorname{N}_{n} - O_{n+1} \operatorname{N}_{n+1} = 0,$$

$$n = \operatorname{n}_{k} \operatorname{qiyməti} \operatorname{\ddot{u}}_{c} \operatorname{\ddot{u}} \qquad \frac{\partial \Delta G(n)}{\partial n} = 0, \quad \delta \operatorname{g}_{n} = \frac{\partial \Delta G(n)}{\partial n} = 0, \quad \delta \operatorname{g}_{n} = 0 \text{ olur.}$$

$$J_{n}(t) = v \exp\left(-\frac{\Delta_{a} \operatorname{g}_{n}}{\operatorname{k}_{B} T}\right) \left(O_{n} Z_{n}(t) \exp\left(-\frac{0}{\operatorname{k}_{B} T}\right) - O_{n} Z_{n+1}(t) \exp\left(\frac{0}{\operatorname{k}_{B} T}\right)\right) =$$

$$= v \exp\left(-\frac{\Delta_{a} \operatorname{g}_{n}}{\operatorname{k}_{B} T}\right) \left(O_{n} Z_{n}(t) \exp\left(-\frac{0}{\operatorname{k}_{B} T}\right) - O_{n} Z_{n+1}(t) \exp\left(\frac{0}{\operatorname{k}_{B} T}\right)\right) =$$

$$= v \exp\left(-\frac{\Delta_{a} \operatorname{g}_{n}}{\operatorname{k}_{B} T}\right) \left(O_{n} Z_{n}(t) - O_{n} Z_{n+1}(t)\right) = vO_{n} \exp\left(-\frac{\Delta_{a} \operatorname{g}_{n}}{\operatorname{k}_{B} T}\right) \left(Z_{n}(t) - Z_{n+1}(t)\right) =$$

$$= vO_{n} N_{n} \exp\left(-\frac{\Delta_{a} \operatorname{g}_{n}}{\operatorname{k}_{B} T}\right) \left(\frac{Z_{n}(t)}{N_{n}} - \frac{Z_{n+1}(t)}{N_{n+1}}\right)$$

Nəticədə

$$\mathbf{J}(\mathbf{n}_{k}) = vO_{n}N_{n}\exp\left(-\frac{\Delta_{a}\mathbf{g}_{n}}{\mathbf{k}_{B}T}\right)\left(\frac{Z_{n}}{N_{n}}-\frac{Z_{n+1}}{N_{n+1}}\right)$$
(1.21)

alarıq. Burada $O_n = 4n^{2/3}$ - səthdəki yerləşməsi mümkün olan atomların sayı, ν - atomların istilik rəqs tezliyi, N_n - paylanma funksiyasıdır. Səthin sfera formasında olduğunu nəzərə alaraq J - üçün daha münasib aşağıdakı düsturu almaq olar:

$$J = \frac{k_b T}{3\pi a^3 \eta} 4 n_k^{\frac{2}{3}} N_V \Gamma \exp\left(-\frac{\Delta G_k}{k_b T}\right)$$
(1.22)

burda N₁=N_V=
$$\frac{N_A \rho_L}{M}$$
, $\Gamma = \frac{2}{n_k} \sqrt{\frac{\Delta G_k}{3\pi k_b T}}$ - Zeldoviç faktorudur.

Nano obyektlərin əmələ gəlməsinin qeyri stasionar halına baxaq. Bu zaman $J \neq \text{const} = J_n(t)$ və (1.16) tənliklər sistemini əvəzinə, təqribi olaraq bir diffuziya tənliyinə keçmək lazımdır. Tam qiymətli n dəyişəni əvəzinə, tam qiymətlərdə n-ə bərabər olan x kəsilməz dəyişənini daxil edək. Onda (1.16) tənliyi aşağıdakı şəklə düşər:

$$\frac{\partial Z(x)}{dt} = k^{-}(n-1)Z(n-1) - k^{+}(n-1)Z(n-1) - k^{+}(n)Z(n) + k^{+}(n+1)Z(n+1)$$
(1.23)

Sistemin dayanıqlı vəziyyəti üçün şərtlər aşağıdakı kimidir: $I^{+}(-1)N(-1) = I^{-}(-)N(-1) = 0$

$$k^{+}(n-1)N(n-1)-k^{-}(n)N(n)=0,$$

 $k^{+}(n)N(n)-k^{-}(n+1)N(n+1)=0$

buradan k^- - ni k^+ vasitəsilə əvəz etsək alarıq: $k^-(n)=k^+(n-1)N(n-1)/N(n), k^-(n+1)=k^+(n)N(n)/N(n+1)$

 k^- - ni k^+ -üçün tapılmış düsturları (1.23) – da yerinə yazsaq. Onda alarıq:

$$\frac{\partial Z(x)}{dt} = k^{+}(n-1)N(n-1)\left[\frac{Z(n-1)}{N(n-1)} - \frac{Z(n)}{N(n)}\right] + k^{+}(n)N(n)\left[\frac{Z(n+1)}{N(n+1)} - \frac{Z(n)}{N(n)}\right]$$

Alınan quruluşların sfera şəklində halı üçün aşağıdakı kimidir: $\frac{\partial Z(x)}{\partial t} = \frac{\partial}{\partial x} \left(k^+ \frac{\partial Z}{\partial x} \right) + \frac{1}{k_B T} \frac{\partial}{\partial x} \left(k^+ Z \frac{\partial \Delta G(x)}{\partial x} \right)$ (1.24) burada $\frac{\partial \Delta G(x)}{\partial x}$ və k_n^+ üçün elmi ədəbiyyatdan məlum analitik ifadələri belədir:

$$\frac{\partial \Delta G(x)}{\partial x} = \left(g^{T} - g^{s} \left(\sqrt[3]{\frac{n_{k}}{n}} - 1\right)\right)$$

$$k_{n}^{+} = \frac{4\sqrt[3]{n^{2}} k_{B}T}{3\pi a^{3} \eta} \exp\left(\frac{G^{L} - G^{s}}{2RT} \left(1 - \sqrt[3]{\frac{n_{k}}{n}}\right)\right)$$
(1.25)

tənliyini yəni

$$\frac{\partial Z(x)}{\partial t} = \frac{\partial}{\partial x} \left(k^+ \frac{\partial Z}{\partial x} \right) + \frac{1}{k_B T} \frac{\partial}{\partial x} \left(k^+ Z \frac{\partial \Delta G(x)}{\partial x} \right)$$

$$Z(x) = 0 \quad t=0, \quad x \succ 0 \text{ başlanğıc və}$$

$$Z|_{x=1} = N \quad , \quad Z|_{x\to\infty} = 0 \quad \text{sərhəd sərtləri üçün həll edərək}$$
əmələgəlmiş obyektlərin tezliyini
$$J(n) = k^+(n)Z(n) - k^-(n+1)Z(n+1) \text{ düsturu əsasında}$$

$$J(n_k) = \left(-k^+(x)N(x)\frac{\partial}{\partial x} \left(\frac{Z(x)}{N(x)} \right) \right) \Big|_{x=n_k} \qquad (1.26)$$

kimi hesablamaq olar. Burada N(x)=N₁exp($-\Delta G(x)/k_BT$).

Səthdə nanoquruluşların əmələ gəlməsi və böyüməsinin modelləşdirilməsi

Bu halda nazik təbəqələrin əmələ gəlməsi və böyüməsində iştirak edən və onların təbəqələrin böyümə prosesinə, quruluşuna və morfologiyasına təsir edən proseslərə baxılır.

Məlumdur ki, təbəqələrin böyüməsinin üç əsas mexanizm vardır:

Birincisi laylar üzrə olan böyümədir (Frank van der Merve mexanizmi). Bu zaman təbəqənin atomları bir-biri ilə deyil, altlıqla daha güclü əlaqədə olur. Bir təbəqənin formalaşması qurtardıqdan sonra, növbəti təbəqənin formalaşması başlayır. İkincisi adalar üzrə olan böyümədir (Vollmer-Weber mexanizmi). Bu zaman təbəqənin atomları altlıqla deyil bir-biri ilə güclü əlaqədə olur. Bu halda üç ölçülü adlar altlığın səthi üzərində əmələ gəlir və böyüyürlər.

Üçüncüsü laylar və adalar üzrə olan birgə böyümədir(Stranski-Krastanov mexanizmi). Bu laylar və adalar üzrə aralıq böyümə mexanizmdir. Bu zaman iki ölçülü təbəqə formalaşandan sonra üç ölçülü adalar böyüyür. Səthdə adaların əmələ gəlməsi və böyüməsini aşağıdakı kimi təsvir etmək olar:

Atomlar qaz fazasından R sürəti ilə hərəkət edərək E_{ads} rabitə enerjisinə malik olaraq səthdə adatom kimi yerləşirlər. Vahid səth sahəsində n_0 sayda yerləşməsi mümkün olan nümunə səthində tək n_1 sayda adatomların sıxlığı yaranır. Adatomların

$$\mathbf{D} = \frac{\nu}{4n_0} Exp\left(-\frac{E_{diff}}{k_b T}\right)$$

diffuziya əmsalına malik səthdə miqrasiyası aşağıdakı proseslərdən biri baş verənə qədər davam edir. Birincisi altlığın temperaturu kifayət qədər yüksəkdir. Buxarlanma nəticəsində Adatom yenidən qaz fazasına qayıtması. Bu proses adatomun yaşama

$$\tau_{ads} = \nu^{-1} Exp\left(\frac{E_{ads}}{k_B T}\right)$$

müddətini xarakterizə edir. İkincisi adatom yaranmış adalara və ya defektlərə qoşula bilər. Üçüncüsü adatomlar özləri birləşib adalar yarada bilər.

Bəzi hallarda kiçik adalar stabil olmayıb və onlar ayrıca atomlara dağılır. Buna baxmayaraq adaların böyüməsi davam etdikcə onlar daha stabilləşir və onların böyüməsi ehtimalı, dağılması ehtimalından daha çoxdur. Kritik adanın ölçüsü i adanın elə minimal ölçüsüdür ki, yalnız bir atomun ona qoşulması onu stabil edir.

Adaların əmələ gəlməsi və dağılmasını sürətini qiymətləndirilməsinə baxaq. Ölçüləri j, j<i olan $n_{\rm j}$

konsentrasiyası ilə təyin olunan stabil adalara baxaq. n_j adalarının formalaşmasına dörd proses təsir edir.

İki proses n_j - nin artmasına təsir edir. Birincisi əlavə j ölçülü adanın əmələ gəlməsi yeni atomun j-1 ölçülü adaya qoşulması ilə baş verir. Bu prosesdə əmələ gəlmiş adaların konsentrasiyası $\sigma_j Dn_j n_1$ olar. İkincisi j+1 ölçülü adadan bir atomun ayrılması, yeni j ölçülü adanın əmələ gəlməsinə səbəb olur. Bu zaman dağılmaların konsentrasiyası $\sigma_{j+1}n_{j+1}$ kimi hesablanır.

İki proses isə n_j - nin azalmasına səbəb olur. Yeni atomun j - ölçülü adaya qoşulması nəticəsində j+1 ölçülü adanın əmələ gəlməsi və j - ölçülü adanın dağılması nəticəsində j-1 ölçülü adanın əmələ gəlməsi prosesi baş verir. Adatomların və n_x stabil nanoquruluşları j > i konsentrasiyasını qiymətləndirmək üçün ədəbiyyatdan məlum olan tənliklər sistemininə baxaq:

$$\frac{dn_{1}}{dt} = R - \frac{n_{1}}{\tau_{ads}} + (2\delta_{2}n_{2} + \sum_{j=3}^{i}\delta_{j}n_{j} - 2\sigma_{1}Dn_{1}^{2} - n_{1}\sum_{j=2}^{i}\sigma_{j}Dn_{j}) - n_{1}\sigma_{x}Dn_{x} \quad (1.27)$$

$$\frac{dn_{j}}{dt} = n_{1}\sigma_{j-1}Dn_{j-1} - \delta_{j}n_{j} + \delta_{j+1}n_{j+1} - n_{1}\sigma_{j}Dn_{j} \qquad (1.28)$$

$$\frac{dn_{x}}{dt} = n_{1}\sigma_{j}Dn_{i} \qquad (1.29)$$

burada $\,D\,$ - diffuziya əmsalı, R - atomların qaz halından prosesə qoşulma sürətidir.

(1.27) tənliyi adatomomların zamana görə dəyişməsinini və R görə artmasını, n_1 / τ_{ads} azalmasını təsvir edir. Mötərizədəki hədlər isə adalaların əmələ gəlməsi və dağılmasına görə adatomların qoşulması və dağılması sürətlərini ifadə edir. $2\delta_2 n_2$ və $2\sigma_1 D n_1^2$ hədləri cüt-cüt adatomların ayrılması və əmələ gəlməsi göstərir. \mathcal{S}_J -ölçüləri 3-dən i kimi adaların dağılmasını və əmələgəlməsini göstərir. Sonuncu həd stabil adaların adatomları özünə qoşması sürətidir. (1.28) tənliyi j ölçülü stabil adaların konsentrasiyasını göstərir. (1.29) tənliyi yeni adatomların qoşulması hesabına n_x stabil adaların konsentrasiyasının böyüməsini təsvir edir. (1.27)-(1.29) tənliklərini həll edərək adaların konsentrasiyasını və adatomların zamana görə funsiyalarını tapılmış olar.

Sərbəst həcmdə nanoquruluşların əmələ gəlməsi və böyüməsinin modelləşdirilməsi

Normal şəraitdə nanoobyektlərin böyüməsi zamanı yeni atomların qoşulması səthdən asılı olmadan baş verir. Bu şəraitdə vahid zamanda rüşeym mütindən klaster vəziyyətinə keçmiş atomların sayı $n_L v_L \exp(-\Delta_a g_n)$ ilə, əksinə keçmiş atomların sayı $n_S v_S \exp(-\Delta_a g_{n+1})$ düsturu ilə təyin olunur. Burda n_L , n_s ,- yaxın səth ayrıcındakı təbəqədə uyğun olaraq ilkin və klaster vəziyyətində atomların sayı, V_L , V_S - uyğun olaraq ilkin və klaster vəziyyətində atomların istilik rəqs tezlikləridir. Buna görə də böyüyən obyektdə atomların sayının dəyişmə sürəti

$$\frac{dn}{dt} = n_{L} \nu_{L} \exp\left(-\frac{\Delta_{a} g_{n}}{k_{B} T}\right) - n_{S} \nu_{S} \exp\left(-\frac{\Delta_{a} g_{n+1}}{k_{B} T}\right)$$
(1.30)

düsturu ilə hesablanar.

Əgər $n_L = n_s = n_A$, V_L , $= V_S = V$ qəbul etsək onda (1.30)düsturu aşağıdakı kimi yazmaq olar:

$$\frac{dn}{dt} = n_A v \left(\exp\left(-\frac{\Delta_a g_n}{k_B T}\right) - \exp\left(-\frac{\Delta_a g_{n+1}}{k_B T}\right) \right) = n_A v \exp\left(-\frac{\Delta_a g_n}{k_B T}\right) \left(1 - \exp\left(-\frac{\Delta_a g_{n+1} - \Delta_a g_n}{k_B T}\right) \right) = n_A v \exp\left(-\frac{\Delta_a g_n}{k_B T}\right) \left(1 - \exp\left(-\frac{\Delta G_{n+1} - \Delta G_n}{k_B T}\right) \right)$$

Nəticədə atomların sayının dəyişməsi sürətinin hesablanması üçün

$$\frac{dn}{dt} = n_A v \exp\left(-\frac{\Delta_a g_n}{k_B T}\right) \left(1 - \exp\left(-\frac{\Delta G_{n+1} - \Delta G_n}{k_B T}\right)\right)$$

düsturunu almış olarıq. n əvəzinə x dəyişənini daxil edərək

$$\Delta G_{n-\Delta}G_{n+1} = (\partial \Delta G/\partial x)|_{x=n}$$
 alarıq.

Aydındır ki, $(\partial \Delta G/\partial x)|_{x=n} = (g^S - g^L) + \frac{2}{3}An^{-1/3}\sigma$.

Əmələ gəlmiş obyektin sfera forması halında $n = \frac{\frac{4}{3}\pi r^3}{\frac{\pi a^3}{6}}q = 8\left(\frac{r}{a}\right)^3 q$, burada a – obyektə daxil olan atomların

ortalanmış diametrinin uzunluğu, q - sıxlıq əmsalıdır.

Onda
$$\frac{\partial \Delta G}{\partial n} = \left(g^{S} - g^{L}\right) + \frac{A}{3}q^{-1/3}\frac{a}{r}\sigma$$
 Və $\frac{\partial \Delta G}{\partial n} = 0$

tənliyini həll edərək $n_k = \frac{8A\sigma^3}{27(g^L - g^S)^3}$ taparıq. Buna görə də

$$\frac{A}{3}q^{-1/3}a\sigma = r_k(g^L - g^S).$$

Nəticədə $\frac{\partial \Delta G}{\partial n} = -\left(g^L - g^S\right)\left(1 - \frac{r_k}{r}\right)$

alarıq. Beləliklə böyüyən obyektdə atomların sayının dəyişmə sürəti üçün aşağıdakı ifadəni almış olarıq:

$$\frac{dn}{dt} = n_A v \exp\left(-\frac{\Delta_a g_n}{k_B T}\right) \left[1 - \exp\left(-\frac{\left(g^L - g^S\right)}{k_B T}\left(1 - \frac{r_k}{r}\right)\right)\right] \quad (1.31)$$

ölçülərin dəyişmə sürətini

$$\frac{dr}{dt} = \frac{2kT}{9\sqrt[3]{q\pi a^2 \eta}} \left[1 - \exp\left(-\frac{\left(G^L - G^S\right)}{RT} \left(1 - \frac{r_k}{r}\right)\right) \right]$$
(1.32)
 Θ ksər hallarda (6.3) düsturunu

$$\frac{dr}{dt} = \frac{fkT}{9\pi a^2 \eta} \left[1 - \exp\left(-\frac{\left(G^L - G^S\right)}{RT} \left(1 - \frac{r_k}{r}\right)\right) \right]$$
(1.33)
kimi istifadə olunur. Burada $f \approx 1$ - səthdəki atomların payı
olub, yeni atomların qoşulması imkanını göstərir və $f = \frac{2}{r}$

$$\frac{dr}{dt} = \frac{fkT}{9\pi a^2 \eta} \left[1 - \exp\left(-\frac{\left(G^L - G^S\right)}{RT}\right) \right]$$
(1.34)

düsturundan istifadə olunur. Bəzi hallarda isə ölçülərin dəyişmə sürətini

$$\frac{dr}{dt} = \sqrt[3]{\frac{3\nu_a}{4\pi}} \frac{k_a^+}{3\sqrt[3]{n^2}} \left[1 - \exp\left(-\frac{\left(G^L - G^S\right)}{RT} \left(1 - \frac{r_k}{r}\right)\right) \right] \quad (1.35)$$

düsturu ilə hesablanır. Burda \mathcal{U}_a - nanoquruluşdakı atomun həcmini, k_n^+ - bir atomun sistemə qoşulması reaksiyasının sürətidir.

Nanohissəcikdəki atomların sayının təyini üsullari

Məlumdur ki, nanohissəciklərin bir çox xassələri onların ölçülərindən, nanohissəcikdəki atomların sayından asılıdır. Nanohissəcikdəki atomların sayı və ölçüləri üçün yuxarıdakı düsturlardan istifadə olunması bir sıra çətinliklərlə bağlıdır. Beləki bu ifadələrə məlum olmayan hesalanması tələb olunan kəmiyyətlər daxildir. Onların hesablanması çətinləşir. Buna görə də istifadə üçün daha əlverilişli üsulların olması zəruridir. Əvəllcə eyni atomlardan təşkil olunmuş nanohissəcikdəki atomların sayı nanohissəciyin ölçüləri arasında əlaqə düsturunu tapaq. Maddə miqdarında atomların sayının $N = \frac{m}{M}N_A$ kimi təyin olunur. Burada N - nanohissəcikdəki atomların sayı, ρ - materialın sıxlığı, N_A -Avoqadro ədədi, M - molyar kütlədir. m=V ρ , $V = \frac{4}{3}\pi r^3$ və $r = \frac{D}{2}$ olduğunu nəzərə alsaq. Onda $m = \frac{\pi \rho D^3}{6}$ alarıq. Nəticədə eyni atomlardan təşkil olunmuş nanohissəcikdəki atomların sayının nanohissəciyin ölçüləri arasında aşağıdakı əlaqə düsturunu almış olarıq [1]:

$$N = \frac{\pi \rho D^3 N_A}{6M} \tag{3.15}$$

N - nanohissəcikdəki atomların sayı, ρ - materialın sıxlığı, N_A -Avoqadro ədədi, M - molyar kütlə, D - nanohissəciyi daxilində saxlayan sferanın diametridir. (1) düsturu ilə Au_{16} qızıl nanohissəciyin ölçüsü D = 0.8 nm alınır.

Müxtəlif atomlardan təşkil olunmuş nanohissəciyin ölçüsü məlum olduqda ondakı atomların sayının tapılması məsələsinə baxılır. Bu zaman nanohissəcik kürə formasında təsəvvür olunur.

 $(CdS)_n$ nanohissəciyinin ölçüsünün təyininə baxaq. Kürə kimi təsəvvür olunan bir CdS birləşməsinin ölçüsü $r_h = r_{cd} + r_s$ kimi təyin olunar(Şəkil 1.). Burada r_{cd} və $r_s - Cd$ və S atomlarının kovalent radiuslarıdır. R radiuslu (Şəkil 2.) nanohissəciyinin (R - verilir) atomlarının sayı aşağıdakı kimi tapıla bilər:

$$n = \frac{R^3 - r^3}{r_h^3}$$
(3.16)

Burada $r = R - 2r_h$, R- nanohissəciyi öz daxilində saxlayan sferanın(Şəkil 3.3.) radiusu, r_h - *CdS* birləşməsini öz daxilində saxlayan sferanın(Şəkil 3.2.) radiusudur. R = 0,52 nm olduqda $(CdS)_n$ nanohissəciyi üçün n = 9alınır. Bütün atomların sayı isə 18 olar.

 $(Au_2S)_n$ nanohissəciyinə baxaq. Au_2S birləşməsi Şəkil 3.4-də təsvir olunmuşdur.

$$AD = a = 4r_{Au}, CD = b = 2(r_{Au} + r_s) , r_h = \frac{\sqrt{a^2 + b^2}}{2}$$

R=0,5nm olduqda $(Au_2S)_n$ nanohissəciyi üşün n=3 alınır. Bütün atomların sayı isə 9 olar.

Yuxarıdakı hesablamaların nəticəsi olaraq Au_{16} , $(CdS)_9$ və $(Au_2S)_3$ nanohissəciklərinin aşağıdakı nəzəri vizual modellərini (Şəkil 4-6.) qurmaq olar. Bu modellər əsasında həmin nanohissəcikləri kvantmexaniki tədqiq etmək olar:

Şəkil 4. Au16 nanohissəciyinin nəzəri vizual modelləri

Şəkil 5. (CdS)9 nanohissəciyinin nəzəri vizual modelləri

Şəkil 6. (Au₂S)₃ nanohissəciyinin nəzəri vizual modelləri

Ədəbiyyat

1.Liu, X., Atwater, M., Wang, J., & Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. <u>Colloids and Surfaces B:</u> <u>Biointerfaces.</u> 2007 Jul 1;58(1):3-7.

2. Kvant səviyyəsində nanosistemlərin modelləşdirilməsi

Kvant səviyyəsində nanosistemlərin öyrənilməsi üçün istifadə olunan qeyri empirik metodlardan biri Xartri-Fok-Rutan metodudur. Bu metodun əsas ideyası ondan ibarətdir ki, sistemə daxil olan hər bir zərrəciyin digər zərrəciklərlə qarşılıqlı təsiri, hər hansı $V(\overrightarrow{r})$ potensialı ilə əvəz olunur. Beləliklə çoxzərrəcikli kvantmexaniki məsələ bir zərrəcikli məsələyə gəlir və kvant səviyyəsində nanosistemlərin öyrənilməsində aşağıdakı ümumiləşmiş Xartri-Fok-Rutan tənliklərindən istifadə olunur:

$$\sum_{q=1}^{m} (F_{i,pq} - \varepsilon_i S_{pq}) c_{qi} = 0, \quad (p = \overline{1,m})$$
(2.1)

burada

$$F_{i,pq} = f_i H_{pq} + \sum_{jk\ell rs} c_{rk}^* c_{s\ell} (2A_{ij,k\ell} J_{prqs} - B_{ij,k\ell} J_{prsq})$$
(2.2)
$$S_{pq} = \int \chi_p \chi_q dV$$
(2.3)

işarə edilmişdir. ε_i - *i*-ci elektronun orbital enerjisi, f_i - *i*-ci təbəqənin elektronlarla məskunluğu dərəcəsi, c_{qi} - naməlum əmsallar, χ_p - bazis funksiyalarıdır, S_{pq} - örtmə matrisi, H_{pq} - Hamilton operatorunun 1-elektronlu matris elementləri, J_{prqs} , J_{prsq} - 2-elektronlu matris elementləri, $A_{ij,k\ell}$ və $B_{ij,k\ell}$ verilmiş matrislərdir. (1) ifadəsi ümumiləşmiş XFR tənlikləri adlanır. Sistemin tam elektron enerjisi hesablamaq üçün

$$E = 2\sum_{ipq} c_{pi}^{*} c_{qi} f_{i} H_{pq} + \sum_{ijk\ell prqs} c_{pi}^{*} c_{rk}^{*} c_{qj} c_{s\ell} (2A_{ij,k\ell} J_{prqs} - B_{ij,k\ell} J_{prsq})$$

düsturundan istifadə olunur. c_{qi} naməlum əmsallarını tapmaq üçün (2.1) qeyri-xətti bircinsli cəbri tənliklər sistemini həll etmək lazımdır. Bu zaman atomları xarakterizə edən χ_q bazis funksiyaları məlum hesab olunur və buna görə də bu tənliklərə daxil olan S_{pq} , H_{pq} , J_{prqs} , J_{prsq} , $A_{ij,k\ell}$ və $B_{ij,k\ell}$ matris elementlərinin ədədi qiymətlərinin məlum olduğu fərz edilir. $F_{i,pq}$ kəmiyyətləri c_{qi} məchullardan qeyri-xətti asılı olduğuna görə də (2.1) tənlikləri qeyri-xətti cəbri tənliklər sistemidir və bu tənliklər sistemini matris formasında aşağıdakı kimi də yazmaq olar:

 $FC = ESC \tag{2.4}$

Burada, E-elektronların orbital enerjiləri vektoru, S –örtmə və C- naməlum əmsallar matrisi, F – Fok matrisi olub C- naməlum

əmsallar matrisinin elementlərindən asılıdır. (4) ümumiləşmiş məxsusi qiymətlər tənliyi olub Rutan tənliyi adlanır. Unitar çevirmə vasitəsi ilə (2.4) ümumiləşmiş məxsusi qiymətlər tənliyini adi məxsusi qiymətlər tənliyinə gətirmək olar. Bunun üçün *S* matrisini *I* vahid matrisə çevirən *V* – unitar matrisi üçün $V^TSV = I$ isə, onda $X = V^{-1}C$ və $F' = V^TFV$ əvəzləməsi apararaq nəticədə

F' X = EX (2.5) adi məxsusi qiymətlər tənliyi alınır. (2.5) tənliyini həll etmək üçün F' - Fok matrisinin diaqonallaşdırılması üsulundan istifadə olunur. Nəticədə ε_i -orbital enerjilərinin və C_{qi} əmsallarının qiymətləri tapılır, ε_i və C_{qi} qiymətlərinin hesablanmış qiymətləri nanosistemlərin tam elektron enerjisini, ionlaşma potensialını, atomların effektiv yüklərini və s. hesablamağa imkan verir.

Alınmış nəticələrin interpretasiyası

Nanomaterialın stabilliyini, mexaniki, optik, elektrik və maqnit xassələrini müəyyənləşdirmək olar. Məlumdur ki, elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Qadağan olunmuş zonanın qiymətini hesablamaq üçün $\varepsilon_{ABMO} - \varepsilon_{YTMO}$ fərqi tapılır. Burada ε_{ABMO} ən aşağı boş və ε_{YTMO} - elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. Qadağan olunmuş zonanın qiymətininin 2 - dən kiçikdirsə nanomaterialın keçirici, 2 - dən böyuk 3-dən kiçikdirsə yarımkeçirici və 3-dən böyükdürsə dielektrik olduğunu göstərir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin enerjisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p = -\varepsilon_{YTMO}$. Möhkəmlik

 $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə müəyyən oluna bilər.

Beləliklə, $\eta > 1eV$ olduğundan nanohissəciyi möhkəm, $\eta < 1eV$ yumşaq material hesab olunur. \mathcal{E}_{ABMO} mənfi işarəlidirsə nanohissəciyi elektrofil, müsbət işarəlidirsə nüklefil olunur. Nanohissəciyinin stabilliyi $\Delta E = E_{nh} - E_h$ hesab düsturu ilə hesablana bilər. Burada E_{nh} nanohissəciyin tam enerjisi, E_h isə bu nanohissəyə daxil olan hissəciklərin ayrılıqda tam enerjiləri cəmidir. $\Delta E > 0$ olduqda material qeyri stabil, $\Delta E < 0$ olduqda material stabil hesab olunur. Materialın süalandıracağı fotonun dalğa üzunluğu $\lambda = \frac{ch}{(\varepsilon_{ABMO} - \varepsilon_{YTMO}) \times 1.6 \times 10^{-19}} \times 10^9$ nm düsturu ilə hesablanır. Burada $c = 3 \cdot 10^8 \text{ m/san}, h = 6.63 \times 10^{-34} \text{ C} \cdot \text{san}.$

Rutan metodu ilə hesablama alqoritmi

- 1. Giris verilənlər: baş, orbital və maqnit kvant ədədləri; atomların koordinatları, elektronların və bazis funksiyalarının sayı, bazis funksiyalarının eksponensial parametrlərinin, $A_{ij,k\ell}$ və $B_{ij,k\ell}$ matris elementlərinin qiymətləri (açıq təbəqə üçün).
- 2. 1 və 2 elektronlu inteqralların matris elementlərinin hesablanması
- 3. İlkin C-nin verilməsi üçün $X = H \cdot f$ matrisinin qurulması və diaqonallaşdırılması
- 4. Örtmə *S* matrisinin vahid *I* matrisinə gətirilməsi: $S = C^T S C$ hesablanması və diaqonallaşdırılması və $RO_{ij} = RO_{ij} \cdot (\sqrt{S_{ij}})^{-1}$, $S \cdot RO = I$.
- 5. $V = C \cdot RO$ və $\varepsilon_i^0 = X_{ii}, i = 1, 2, ..., m$
- 6. Sıxlıq $RO = C^T Cf$ və Fok $F = Hf + RO(2A \cdot J BK)$ matrisinin elementlərinin hesablanması
- 7. $F' = V^T F V$ hesablanması və diaqonallaşdırılması: $F' \cdot X = F H$

 $FH_{ij} = \begin{cases} 0 & i \neq j \\ \neq 0 & i = j \end{cases}$

 FH_{ii} elementləri artan sıra ilə nizamlanması və $\varepsilon_i = FH_{ii}$, i = 1, 2, ..., m.

8. Problemin həllinin dəqiqliyi alındımı ($f \max = \max_{i} |\varepsilon_i - \varepsilon_i^0|$)? Yox alınmış məxsusi vektorlar üçün C = VX, V = C hesablanır və hesablama prosesini 6-ci addımdan davam et! Bəli, növbəti addıma keç!

9. *C* = *VX* üçün sistemin tam elektron enerjisi, ionlaşma potensialı, atomların effektiv yükləri və s. hesablanır. Hesablamanın sonu

Alınmış nəticələrin doğruluğu Virial şərti ilə müəyyənləşir. Virial şərti belədir : $\frac{-V}{T} \approx 2$. Burada V və T uyğun olaraq sistemin potensial və kinetik enerjisidir.

Bu metod ilə kvant səviyyəsində nanosistemlərin modelləşdirilməsinə baxaq. Bununun üçün Fe₃O₄ hissəciyinin vizual modelini quraq (Şəkil 2.1) və kvant səviyyəsində kompüterdə hesablanmasını aparmaq lazımdır. Nəticədə aşağıdakıları alarıq:

Şəkil 2.1. Fe₃O₄ hisəciyinin vizual modelləri

Tam Enerji	= -4041.460231944 (a.v.),
Elektronların kinetik enerjisı	= 4016.484721383 (a.v.),
Virial şərti (-V/T)	= 2.0062.

ATOMLARIN YÜKLƏRI VƏ KOORDINATLARI							
Z Atomu	Yükü	Koordinatları(Anqstremlə)					
		Х	у	Z			
3 26	0.325387	-0.71883092	-1.20489795	-0.58858283			
5 26	0.260842	1.07250870	1.32842848	-0.58858283			
7 26	0.375242	-1.61448609	1.32842848	0.96277123			
4 8	-0.203110	2.86384836	1.96175480	-0.58858283			
2 8	-0.137197	-2.51014091	1.96175466	2.51412561			
68	-0.449784	-0.71883092	0.69510205	-0.58858283			
1 8	-0.171380	-0.71883092	-3.10489795	-0.58858283			

Alınmış nəticələrin analızi haqqında məlumat növbəti mövzularda veriləcəkdir. Virial şərtinin 2,0062 bərabər olması hesablamaların nəticələrininin real prosesi düzgün əks etdirməsini göstərir.

3. Sıxlıq funksionalı nəzəriyyəsi metoduna əsaslanan modelləşdirmə

funksionalı nəzəriyyəsi(SFN) metodunun Sixliq qeyriemprik metodlardan fərqi ondan ibarətdir ki, sistem halı elektron sıxlığı funksionalı $\rho(\vec{r})$ vasitəsilə təyin olunur və $\rho\left(\overrightarrow{r}\right) = \int \dots \int \left|\Phi_{e}\right|^{2} d\sigma_{1} \dots d\sigma_{N}$ düsturu ilə ifadə olunur. Burada Φ_{e} sistemin çoxelektronlu dalğa funksiyası, $d\sigma_i$ - i-ci elektronun fəza və sipin koordinatlarıdır. Beləliklə $\rho\left(\overrightarrow{r}\right)$ elektronun fəza və sipin koordinatlarının funksiyası olub, sistemə daxil olan elektronlardan hər hansı birinin aşkar olunması ehtimalıdır. Bu cırlaşmayan nəzərivvə sistemin əsas halının elektron quruluşunun bütün xassələrini tamamilə müəyyən edir. 1964-cü ildə Honeberq və Kon tərəfindən əsası qoyulan bu metod təcrübədə tətbiq olunmağa başlanılmışdır. Əgər sistemin əsas

halının bütün xassələri $\rho \begin{pmatrix} \vec{r} \\ r \end{pmatrix}$ ilə ifadə olunursa, onda sistemin elektron enerjisi

 $E[\rho] = T[\rho] + V_{en}[\rho] + V_{ee}[\rho]$ (3.1) düsturu ilə hesablanır. Burada $T[\rho]$ - sistemin kinetik enerjisi, $V_{en}[\rho]$ -elektronların nüvə ilə qarşılıqlı təsir, $V_{ee}[\rho]$ elektronlararası qarşılıqlı təsir potensiallarıdır. $V_{ee}[\rho]$ potensialı $V_{ee}[\rho] = V_{coul}[\rho] + V_{xc}[\rho]$ düsturu ilə hesablanır. $V_{coul}[\rho]$ elektronların kulon qarşılıqlı təsir potensialı, $V_{xc}[\rho]$ mübadilə korrelyasiya potensialıdır. $T[\rho]$, $V_{en}[\rho]$ və $V_{coul}[\rho]$ Kon-Şem metodu ilə hesablanır. Bu metodda $\rho\left(\overrightarrow{r}\right)$ aşağıdakı kimi təyin olunur:

$$\rho\left(\overrightarrow{r}\right) = \sum_{m=1}^{N} \left| \psi_m\left(\overrightarrow{r}\right)^2 \right|$$
(3.2)

Qeyd edək ki, ψ_i -Kon-Şem orbitalı olub Xartri-Fok orbitalından $V_{xc}[\rho]$ mübadilə-korrelyasiya potensialının olması ilə fərqlənir. $V_{xc}[\rho]$ mübadilə-korrelyasiya potensialının dəqiq ifadəsi məlum olmadığına görə və bunun üçün əlavə yaxınlaşmalardan istifadə olunur. Belə yaxınlaşmalardan biri Lokal sıxlıq yaxınlaşması olub, elektronun lokal xassələrindən asılıdır. Bu yaxınlaşmada $V_{xc}[\rho] = \int dr \rho \left(\overrightarrow{r} \right) E_{xc} \left(\rho \left(\overrightarrow{r} \right) \right)$ kimi hesablanır. Burada $E_{xc} \left(\rho \left(\overrightarrow{r} \right) \right)$ mübadilə-korrelyasiya enerjisi olub, onun hesablanması üçün ədədi və ya təqribi düsturlar vardır. Kon-Şem metodunun dəqiqliyini artırmaq üçün sıxlıq qradiyentini nəzərə almaq lazımdır. Bu yanaşma ümumiləşmiş qradiyent yaxınlaşması adlanır. $V_{xc}[\rho]$ mübadilə-korrelyasiya

 $\mathbf{V}_{\mathrm{xc}}[\rho] = \int dr \rho \left(\overrightarrow{r} \right) E_{\mathrm{xc}} \left(\rho \left(\overrightarrow{r} \right), \frac{d\rho \left(\overrightarrow{r} \right)}{dr} \right)$ potensialı düsturu ilə

hesablanır.

 $V_{xc}[\rho]$ hesablanmasında ümumiləşmiş Hal-hazırda qradiyent yaxınlaşmasından istifadə olunur. $V_{xc}[\rho]$ mübadiləkorrelyasiya potensialı məlum olarsa, onda asağıdakı Kon-Sen tənliyi həll edilir:

$$\left(-\frac{\Delta}{2} + V_{eff}\left(\overrightarrow{r}\right)\right)\psi_{m}\left(\overrightarrow{r}\right) = \varepsilon_{m}\psi_{m}\left(\overrightarrow{r}\right).$$
(3.3)

Nəticədə məxsusi qiymətlər ε_m və $\psi_m \left(\stackrel{\rightarrow}{r} \right)$ məxsusi

alur

funksiyaları tapılır və $\rho\left(\overrightarrow{r}\right) = \sum_{m=1}^{N} \left|\psi_m\left(\overrightarrow{r}\right)^2\right|$ sıxlıq funksionalı müəvvənləsmis Burda

$$V_{eff}\left(\overrightarrow{r}\right) = V_{ex}\left(\overrightarrow{r}\right) + V_{XC}\left(\overrightarrow{r}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r}-\overrightarrow{r'}\right|\right)d\overrightarrow{r'}, \quad V_{XC}\left(\overrightarrow{r}\right) - V_{XC}\left(\overrightarrow{r}\right) = V_{ex}\left(\rho\left(\overrightarrow{r}\right) + V_{XC}\left(\overrightarrow{r}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r}-\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + V_{XC}\left(\overrightarrow{r}\right) = V_{ex}\left(\overrightarrow{r}\right) + V_{XC}\left(\overrightarrow{r}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r}-\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + V_{XC}\left(\overrightarrow{r}\right) = V_{ex}\left(\overrightarrow{r}\right) + V_{XC}\left(\overrightarrow{r}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r}-\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + V_{XC}\left(\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)/\left|\overrightarrow{r'}\right|\right)d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right))d\overrightarrow{r'}\right) + \int \left(\rho\left(\overrightarrow{r'}\right)$$

mübadilə və $V_H(\vec{r}) = \int \left(\rho(\vec{r'}) / |\vec{r} - \vec{r'}| \right) d\vec{r'}$ - Hartri potensialını

xarakterizə edir. Sistemin elektron enerjisi, kimyəvi potensialı, hissəciklərinin sayını və digər kəmiyyətlərin qiymətlərini hesablamaq olar:

$$E = \sum_{i=1}^{N} \varepsilon_{i} - \frac{1}{2} \int \int \frac{\rho(\vec{r})\rho(\vec{r'})}{|r-r'|} d\vec{r} d\vec{r'} - \int V_{XC}(\vec{r})\rho(\vec{r})d\vec{r} + E_{XC}(\rho(\vec{r}))$$

$$C = \frac{3}{10} (3\pi^{2})^{2/3}, \quad \gamma = \left(\frac{3}{5C}\right)^{3/2}, \quad \mu = \frac{\delta E}{\delta \rho} + V_{eff}(\vec{r}),$$

$$\rho(\vec{r}) = \gamma \left(\lambda - V_{eff}(\vec{r})\right)^{3/2}, \quad N = \int \rho(\vec{r})d\vec{r} \qquad (3.4)$$
burada *N* elektronların sayı, λ - sistemin kimyəvi potensialını xarakterizə edir, $V_{ex}(\vec{r})$ - xarici effektiv sahənin potensialı, $V_{eff}(\vec{r})$ isə sistemin effektiv sahənin potensialıdır. Sistemə daxil olan hissəciklərarası qarşılıqlı təsir nəzərə alınmazsa onda bu hal üşün Kon-Şem tənliyin aşağıdakı kimidir:

$$\left(-\frac{\Delta}{2}+V_{ex}\left(\overrightarrow{r}\right)\right)\psi_{m}\left(\overrightarrow{r}\right)=\varepsilon_{m}\psi_{m}\left(\overrightarrow{r}\right)$$
(3.5)

(3.2) tənliyi həll edilərək məxsusi qiymətləri ε_m və $\psi_m \left(\overrightarrow{r} \right)$ məxsusi funksiyaları və sıxlığı funksionalı $\rho \left(\overrightarrow{r} \right) = \sum_{m=1}^{N} \left| \psi_m \left(\overrightarrow{r} \right)^2 \right|$ tapılır. Sistemin elektron enerjisi $E = \sum_{i=1}^{N} \varepsilon_i$ və digər kəmiyyətlər hesablanır.

SFN metodunun hesablama alqoritmi

1. Giriş verilənləri: Atomların koordinatları və elektronların sayı

2. Ehtimal olunan elektron sıxlığı funksionalının verilməsi $\rho(\vec{r})$. Bu halda elektron sıxlığını verilmiş atomların yüklərinin cəmi kimi və ya qabaqcadan yarımemprik metodlarla hesablamaq olar.

3. Hartri $V_H(\vec{r})$ potensialının hesablanması. $\Delta V_H(\vec{r}) = -4\pi\rho(\vec{r})$ Puasson tənliyinin həllindən tapılır.

4. Effektiv $V_{eff}\left(\overrightarrow{r}\right)$ potensialın qurulması

5. Kon-Şem tənliyinin həll edilməsi

7. Kon-Şem tənliyinin həllindən yeni elektron sıxlığı funksionalının qurulması

8. Alınmış yeni elektron sıxlığı funksionalının əvvəlki elektron sıxlığı funksionalı ilə kifayət qədər dəqiqliklə üst-üstə düşməsi şərtinin yoxlanması?

Əgər şərt ödənmirsə, hesablanmış yeni elektron sıxlığı giriş verilən kimi qəbul edib, prosesi 3-dən davam etməli. Şərt ödənərsə hesablamanın sonu hesab edilir.

SFN metodu ilə Fe₃O₄ hissəciyinin tədqiqinə baxaq. Fe₃O₄ hissəciyinin vizual modeli Şəkil 3.1.-də verilmişdir və SFN metodu tətbiq etməklə kompüterdə hesablanmasını aparmaq lazımdır. Beləliklə biz Fe₃O₄ hissəciyi üçün kompüterdə hesablamanın nəticə aşağıdakı kimidir:

Tam enerji	= -3916.861115183 (a.v.),
Elektronların kinetik enerjisı	= 3978.165287900 (a.v.),
Virial şərti (-V/T)	= 1.9846.

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI

Z Atomu	Yükü	Koordinatları(Anqstremlə)		
		Х	У	Z
3 26	-14.246023	-0.71883080	-1.20489800	-0.58858280
5 26	2.588963	1.07250900	1.32842800	-0.58858280
7 26	9.257804	-1.61448600	1.32842800	0.96277130
4 8	-3.898432	2.86384800	1.96175500	-0.58858280
2 8	6.001310	-2.51014100	1.96175400	2.51412600
68	2.822991	-0.71883080	0.69510180	-0.58858280
1 8	-2.526635	-0.71883080	-3.10489800	-0.58858280

Alınmış nəticələrin interpretsiyası və analizi haqqında məlumat növbəti mövzularda veriləcəkdir. Virial şərtinin 1.9846 bərabər olması hesablamaların nəticələrininin real prosesi müiyyən mənada düzgün əks etdirdiyini göstərir.

4. Molekulyar dinamika metoduna əsaslanan modelləşdirmə

Nanosistemlərin molekulyar dinamika metoduna əsasən modelləsdirilməsi nəticəsində sistema daxil olan nanoobyektlərin zamandan asılı olaraq qarşılıqlı təsirlərininin inkişafını izləməyə imkan verir. Bu metodun üstünlüyü ondan ibarətdir ki. atomların hərəkət sürətlərini və sistemin temperaturunu nəzərə almaqla modelləşdirməyə imkan verir. Sistemə daxil olan hissəciklər malik olduqları potensial sahələri vasitəsi ilə bir-biri ilə qarşılıqlı təsirdə olurlar. Potensial enerji,rabitə uzunluğu və bucağı, torsion bucaqlardan və kovalent olmayan garsılıglı təsirlərdən asılı olur. Hissəciklərə təsir edən qüvvələr onların koordinatlarından asılı funksiya hesab olunur garşılıqlı təsir potensiallarını bilməklə nanosistemi və modelləsdirmək olar.

Hal - hazırda bu metod nanosistemlərdəki defektləri, çoxlu sayda atomlardan təşkil olunmuş nanoklasterlərin və bioloji nanoquruluşların öyrənilməsində geniş istifadə olunur. $U(\overrightarrow{r})$ potensialının təsiri altında hərəkət edən n sayda nanohissəciklərdən ibarət olan sistemə baxaq. Hissəciklərin hərəkətini onların koordinatları $\overrightarrow{r_i}$ və impulsları $\overrightarrow{p_i} = m_i \upsilon_i$ vasitəsi ilə təsvir etmək olar. Məlumdur ki, belə sistemin Hamilton funksiyası

$$H\begin{pmatrix} \overrightarrow{r}, \overrightarrow{p} \\ r, p \end{pmatrix} = \sum_{i=2}^{n} \frac{\overrightarrow{p_i}^2}{2 \cdot m_i} + U\begin{pmatrix} \overrightarrow{r} \\ r \end{pmatrix}$$
(4.1)

düsturu ilə təyin olunur. i-ci nanohissəciyə təsir edən qüvvəni

$$\vec{F}_{i} = -\frac{\partial U\left(\vec{r}_{i}\right)}{\partial \vec{r}_{i}}$$

$$(4.2)$$

düsturu ilə hesablamaq olar.

Belə sistemin hərəkət tənliyini aşağıdakı kimi yazmaq olar:

$$\frac{\partial \vec{r}_i}{\partial t} = \frac{\partial H}{\partial p_i} = \frac{\vec{p}}{m_i}, \quad \frac{\partial \vec{p}_i}{\partial t} = -\frac{\partial H}{\partial \vec{r}_i} = -\frac{\partial U}{\partial \vec{r}_i} = F_i \left(\vec{r}_i\right)$$
(4.3)

$$\frac{\partial^2 \vec{r_i}}{\partial t^2} = \frac{1}{m_i} \cdot \frac{\partial \vec{p_i}}{\partial t} = \frac{1}{m_i} \cdot F_i \left(\vec{r_i}\right)$$
(4.4)

(4.3) və (4.4) tənliklərindən sistemin hərəkət tənliyi

$$m_i \cdot \frac{\partial^2 \vec{r_i}}{\partial t^2} = F_i \left(\vec{r_i} \right)$$
(4.5)

Nyutonun ikinci qanunu alınır. Sistemin vəziyyətini izləmək üçün (4.5) tənliyini inteqrallamaq zəruridir. Yəni hissəciyin koordinat və sürətinin başlanğıc qiymətlərinə görə zamanın növbəti istənilən anında onun trayektoriyasını almaq olar. (4.5) hərəkət tənliyini müxtəlif metodlarla inteqrallamaq olar. Əksər metodlar sonlu fərqlər metoduna əsaslanır. Burada zaman müəyyən addımla diskret dəyişir. Ən mükəmməl metodlardan biri Verle alqoritmidir. Metodun əsas ideyası hissəciyin $\vec{r}(t + \Delta t)$ və $\vec{r}(t - \Delta t)$ vəziyyətlərini sıraya ayırmaq və sonra cəmləmək lazımdır. Nəticədə hissəciyin koordinatları üçün aşağıdakı düsturu almış olarıq:

$$\vec{r}(t+\Delta t) = 2\vec{r}(t) - \vec{r}(t-\Delta t) + \vec{a}(t)\Delta t^{2} + O(\Delta t^{4}), \quad (4.6)$$

$$aradU(\vec{r}(t))$$

burada $\vec{a}(t)$ hissəciyin təcilidir və $\vec{a}(t) = -\frac{gradU[r(t)]}{m}$ hesablanır.

(4.6) tənliyi əsas Verle alqoritmi adlanır. Bu alqoritm istifadə üçün kifayət qədər sadə olub və stabildir. Çatışmayan cəhəti koordinat üçün bir neçə başlanğıc qiymətlərinin olmamağıdır. Buna görə əsas Verle alqoritmindən əlavə bu alqoritmin sürətli variantı hazırlanmışdır. Bu zaman hissəciyin $t + \Delta t$ anındakı vəziyyəti, sürəti və təcili aşağıdakı kimi hesablanır:

$$\vec{r}(t + \Delta t) = 2\vec{r}(t) + \vec{v}(t)\Delta t + \frac{1}{2}\vec{a}(t)\Delta t^2$$

$$\vec{v}\left(t + \frac{\Delta t}{2}\right) = \vec{v}(t) + \frac{1}{2}\vec{a}(t)\Delta t \qquad (4.7)$$

$$\vec{a}(t) = -\frac{gradU\left(\vec{r}(t)\right)}{m}$$

$$\vec{v}(t + \Delta t) = \vec{v}\left(t + \frac{\Delta t}{2}\right) + \frac{1}{2}\vec{a}(t + \Delta t)\Delta t .$$

Nəticədə ixtiyari anda nanosistemin vəziyyətinin zamandan asılı olası haqqında məlumat əldə etmək və digər fiziki və kimyəvi kəmiyyətlərin qiymətlərini hesablamaq olar. Bu metod HeperChem və NanoEngineer-1 programlarında geniş istifadə olunur. Xüsusilə də son dövrdə hazırlanmış NanoEngineer programında əsas metod kimi reallaşdırılmışdır. Xüsusilə də son dövrdə hazırlanmış NanoEngineer-1 programında əsas metod kimi reallaşdırılmışdır. Molekulyar dinamika (MD) metodu ilə bəzi nanoquruluşların kompüterdə tədqiqinə baxaq. Məlumdur düzgün altı bucaqlının təpələrində C karbon atomları yerləşmiş və qalınlığı 10⁻¹⁰ m olan qrafen təbəqələrin alınması və tədqiqinə görə Rusiya alimləri Geym və Noveselyevə 2010 ildə Nobel mukafatı verilmişdir. Belə təbəqələrin elektronikada və müxtəlif sahələrdə geniş tətbiqi gözlənilir. Məhz buna görə də MD metodu ilə tə grafenləri tədqiq edək. Bunun üçün NanoEngineer programından istifadə edək. 62 karbon atomdan ibarət qrafenin müxtəlif formada vizual modelləri aşağıdakı kimidir:

Şəkil 4.1. Qrafenin vizual modelləri

Qrafenin temperatura davamlılığını NanoEngineer-1 progamı vasitəsilə molekulyar dinamika metodu ilə temperatur və zamandan asılı olaraq tədqiq etmək məqsədilə temperaturun T=300K, 1000K, 2000K, 5000K, 10000K, 11000K, 12000K, 13000K, 14000K, 15000K, 20000K giymətləri üçün, zamanın 1ps qiymətində, 0-dan başlayaraq 0,001ps addımı ilə 1ps qədər müddətində kompüter hesablamaları aparılmışdır. zaman Alınmış nəticələr əsasında qrafenin tam enerjisinin attocoul vahidi ilə verilmiş qiymətlərinin temperaturdan asılılıq qrafiki (Səkil 4.2) qurulmuşdur. Aparılmış kompüter tədqiqatlarının nəticələri bunu deməyə imkan verir ki, qrafen yüksək temperatura davamlı olub və onun quruluşunun dağılması müsahidə qiymətində olunmağa baslavır. T=15000K T=16000K qiymətində isə artıq qrafenin quruluşunun dağılması aydın müşahidə olunur və T=20000K giymətində isə onun qurulusunun tamam dağılması müsahidə olunmusdur, bu hala uyğun qrafenin tam enerjisinin zamandan asılılıq qrafiki qurulmumşdur(Şəkil 4.5). Goründüyü kimi tam enerji zamandan asılı olaraq dəyişir. Stabil quruluşlarda isə tam enerjinin qiyməti zamandan asılı olaraq demək olar ki, Səkil 4.6-da T=2000K temperaturdakı dəvismir. stabil quruluşun tam enerjisinin zamandan aşılılığı verilmişdir. Nəticələr Cədvəl 4.1-də verilmisdir.

Şəkil 4.2. Qrafenin tam enerjisinin temperaturdan asılılıq qrafiki

Şəkil 4.3. Qrafenin tam enerjisinin zamandan asılılıq qrafiki(T=20000K)

Şəkil 4.4. Qrafenin tam enerjisinin zamandan asılılıq qrafiki(T=2000K)

Temperaturun müxtəlif qiymətlərində və zamanın 1ps qiymətində, 0-dan başlayar 0.001 addımı ilə 1ps qədər zaman müddətində qrafenin NanoEngineer-1 proqramı vasitəsilə aparılmış hesablamalardan sonra alınmış vizual modelləri Cədvəl 4.1.-də verilmişdir.

5. Yarımemprik metodlara əsaslanan modelləşdirmə

Nanosistemlərin öyrənilməsində istifadə olunan Şredinger tənliyi yarım-empirik metodlar ilə bəzi sadələşmə və yaxınlaşmalardan istifadə edərək həll olunur. Bütün istifadə olunan metodlar aşağıdakı xüsusiyyətlərə malikdir:

Hesablamalar yalnız valent elektronlar üçün aparılır, bir sıra qarşılıqlı təsir inteqralları nəzərə alınmır, elektron orbitalları üçün standart bazis funksiyalar və təcrübədən alınmış bəzi parametrlər istifadə olunur. Məlumdur ki, qeyri-empirik və digər metodlarla nanosistemlərin öyrənilməsi zamanı kompüter hesablamaları apararkən bazis funksiyaların *m* sayı nə qədər böyük olarsa alınmış nəticələr prinsipcə daha dəqiq olar. Məhz buna görə də daha dəqiq nəticələr almaq məqsədilə bazis funksiyalarının sayını böyütməyə cəhd göstərirlər. Lakin bu meyl bir sıra ciddi məhdudiyyətlərlə qarşılaşır. Qeyri-empirik və digər metodlarla kompüter hesablamaları aparmaq üçün ilk növbədə 1 və 2 elektronlu inteqralların hesablanması ilə əlaqədar olaraq riyazi və kompüter hesablamaları çətinlikləri meydana çıxır. Məlumdur ki, birelektronlu inteqralların *k* sayı bazisin *m* ölçüsü ilə $k = \frac{1}{2}m(m+1)$, ikielektronlu inteqralların

$$\ell$$
 sayı isə $\ell = \frac{1}{2}k(k+1) = \frac{1}{8}m(m+1)[m(m+1)+2]$ kimi

əlaqədardır. Beləliklə, qeyri-empirik və digər metodlarla kompüter hesablamaları aparmaq üçün m ölçülü bazisdən istifadə etdikdə hesablanması tələb olunan inteqralların ümumi sayı

$$k + \ell = \frac{1}{4}m(m+1)\left[\frac{1}{2}m(m+1) + 3\right] \approx \frac{m^4}{8}$$
(5.1)

düsturu ilə qiymətləndirilə bilər. Deməli bazis funksiyaların sayı artdıqca inteqralların sayı kəskin şəkildə artır. Qarşıya çıxan çətinlikləri aradan qaldırmaq üçün yarım-empirik kvantmexaniki metodlardan istifadə edilməsini zəruri edir. Bu yarım-empirik kvantmexaniki metodlar əsasında aparılmış tədqiqatlar nəticəsində nanosistemlərin fəza quruluşunu, elektrik, maqnit və digər xassələrinin öyrənilməsində böyük imkanlar yaranmışdır.

Yarım-empirik kvantmexaniki metodların əsas ideyası ondan ibarətdir ki, sistemin elektron quruluşunu onların fiziki xassələrini dəyişməz saxlayan birelektronlu MO LCAO SCF yaxınlaşmasında təsvir etmək olar. Yarım-empirik metodlarda təqribilik dərəcəsi əsasən iki amillə təyin olunur:

1. Baxılan sistemdə əhəmiyyət kəsb edən elektronların ayrılması; məsələn π -elektronlu yaxınlaşmada bütün elektronlardan yalnız π -elektronlar; valent yaxınlaşmasında isə yalnız valent elektronları nəzərə alınır.

2. Molekulyar inteqrallar haqqında sadələşmələr.

Valent yaxınlaşmasına görə MO LCAO metodunda bazis funksiyaları olaraq sistemi təşkil edən atomların yalnız valent elektronlarına aid olan valent atom orbitalları götürülür, bu atomların daxili elektronları (məsələn, karbon atomunun və ikinci dövrün digər elementlərinin atomlarının 1*s* -elektronları) nəzərə alınmır və belə hesab edilir ki, həmin daxili elektronlar uyğun atom orbitallarında lokallaşmışlar və polyarizə olunmamış gövdə yaradırlar. İnteqralların sayını azaltmaq üçün isə yarım-empirik kvantmexaniki metodlarda Kulon qarşılıqlı təsir inteqrallarının əsas hissəsi və ya hamısı nəzərə alınmır. Bundan başqa H_{pq} və H_{pp} gövdə inteqralları adətən dəqiq hesablanmır və parametrlər kimi qəbul edilir. Özü də bu parametrlər elə götürülür ki, fiziki kəmiyyətlərin həmin metodla hesablanmış qiymətləri yaxşı olduqda, hesablanmış və təcrübədən məlum olan xassələrin ən yaxşı uzlaşması alınsın.

Hər bir yarım-empirik metodda parametrlərin uyğunlaşdırılması bir, nadir hallarda isə iki xassə üzrə həyata keçirildiyindən təbiidir ki, yarım-empirik metodlarla aparılmış hesablamaların nəticələri sistemin bütün fiziki və kimyəvi xassələrini eyni zamanda kifayət qədər dəqiq əks etdirə bilməz. Bununla əlaqədar olaraq yarım-empirik metodların sistemin müəyyən xassəsini və ya bir neçə xassəsini qənaətbəxş təsvir edən müxtəlif parametrləşdirmələri meydana çıxır. Yarımempirik kvantmexaniki metodlar üçün aşağıdakı əsas tələblər ödənməlidir:

1.Yarım-empirik metodlar elə sadə olmalıdırlar ki, onları kompüterlər vasitəsilə çoxlu sayda atomlardan təşkil olunmuş sistemin quruluşunu öyrənmək üçün tətbiq etmək mümkün olsun.

2. Sistemdə elektronlar arası kulon itələmə, elektronların atom nüvələri tərəfindən cəzb olunması və s. kimi əsas qarşılıqlı təsirlərin saxlanması zəruridir.

3. Hesablamaların nəticələri asanlıqla şərh olunan və həm də əvvəlcədən hesablama sxeminə daxil edilməyən keyfiyyət xarakterli modellərin qurulmasına imkan verməlidir. 4. Yarım-empirik kvantmexaniki metodlar elektron korrelyasiyanı, sıfırıncı rəqslərin enerjisini və s. mümkün qədər nəzərə almalıdır.

5. Yarım-empirik kvantmexaniki metodlar vasitəsilə aparılmış hesablamaların nəticələri elektronlarla məskunlaşmış orbitalların ortoqonal çevrilmələrinə nəzərən invariant qalmalıdır.

Yarım-empirik kvantmexaniki metodların yaranmasında və inkişafında sıfırıncı diferensial örtmə (SDO) yaxınlaşması mühüm rol oynamışdır. 1952-ci ildə Parizer və Parr və onlardan asılı olmayaraq 1953-cü ildə Popl tərəfindən təklif olunmuş SDO yaxınlaşması (bəzən buna müəlliflərin şərəfinə PPP yaxınlaşması da deyirlər) elektronlar arasında Kulon itələmə inteqrallarının sayını kəskin şəkildə azaltmağa imkan verir. Bu yaxınlaşmanın ideyası ondan ibarətdir ki, Kulon itələmə inteqrallarının çoxunun qiyməti sıfıra yaxındır. Ona görə də SDO yaxınlaşmasında örtmə və əksər ikielektronlu inteqralların qiymətləri hesablanmır.

Hal-hazırda geniş istifadə olunan SDO yarım-empirik metodlar valent yaxınlaşmasına əsaslanır və bu metodlar şərti olaraq iki qrupa bölünə bilər:

1. Diferensial örtmənin tam nəzərə alınmaması (complet neglect of differential overlap-CNDO) metodları;

2. Diferensial örtmənin qismən nəzərə alınmaması INDO (intermediate neglect of differential overlap) və diferensial örtmənin modifikasiyalanmaşını qismən nəzərə alınmaması MINDO (modified intermediate neglect of differential overlap) metodları. İkinci qrupa aid edilən yarım-empirik metodlar birbirindən parametrləşmənin xarakteri ilə fərqlənirlər.

CNDO metoduda ikielektronlu inteqrallardan yalnız Kulon inteqrallarını nəzərə alaraq hesablamalar aparılır.

INDO və MINDO3 metodlarında isə Kulon inteqralları ilə yanaşı, həm də birmərkəzli mübadilə inteqralları da nəzərə alınır. Burada birmərkəzli ikielektronlu inteqrallar üçün yaxınlaşma aşağıdakından ibarətdir: $(pq | rs) = \gamma_{pp} \delta_{pq} \delta_{rs} \delta_{pr} + \gamma_{pr} \delta_{pq} \delta_{rs} (1 - \delta_{pq}) + h_{pq} (\delta_{pr} \delta_{qs} + \delta_{ps} \delta_{qr}) (1 - \delta_{pq})$ (5.2)

 γ_{pq} və h_{pq} kəmiyyətləri, uyğun olaraq Kulon və mübadilə inteqrallarıdır.

MNDO metodu sistemin quruluşunu optimallaşdıraraq, elektron və atom quruluşunu hesablamağa imkan verir.

MNDO/d d-orbitallari nəzərə almaqla sistemi öyrənməyə imkan verir.

AML metodu MNDO metodunun yaxşılaşdırılmış variantı olub, daha dəqiq yarım-empirik metoddur.

PM3 metodu AML metodundan parametrlərin qiymətlərinin görə fərqlənir.

ZINDO/l metodu MNDO metodunun variantı olub keçid elemenləri olan sistemləri hesablamaq üçün istifadə olunur.

ZINDO/s metodu INDO metodunun versiyası olub və görünən spektrləri tədqiq etmək üçün istifadə olunması faydalıdır.

TNDO ən yeni yarım-empirik metod olub yüksək dəqiqliklə nanosistemlərin öyrənilməsində istifadə etmək olar. Extended Huckel metodunda sistemin quruluşunu optimallaşdırmadan hesablamalar aparılır. Bu zaman sistemə daxil olan hissəciklər arası qarşılıqlı təsir nəzərə alınmır və özözünə qərarlaşmış sahə yaxınlaşması istifadə olunmur.

Qızıl nanohissəciyi və onun nanokopozisiyalarının modelləşdirilməsi və yarm-empirik Genişləniş Hükkel metodu kompüterdə hesablamanin nəticəsi aşağidaki kimidir:

Şəkil 5.1. Au₁₆ qızıl nanohissəciyinin vizual modelləri

Tam enerji = -96.224831756 (a.v.)

Z Atom	u Yükü	Koordinatları(Anqstremlə)			
			Х	У	Z
1 79	0.013892	-2.66668	-1.11036	-1.22597	
2 79	0.013875	1.43153	2.79064	-0.09537	
3 79	0.013888	2.98308	0.80712	0.54449	
4 79	0.041471	1.36563	0.53539	-1.60525	
5 79	-0.029281	2.50325	-1.60286	-0.41826	
6 79	-0.026048	2.21390	-1.08694	2.20114	
7 79	0.041474	0.59167	1.05973	1.80441	
8 79	-0.029300	-1.12446	2.72660	0.55861	
9 79	-0.026080	-0.36022	2.59747	-2.01257	
10 79	0.041479	-1.90627	0.20016	1.02679	
11 79	-0.029293	-0.38269	-1.28222	2.68710	
12 79	-0.026087	0.81308	-3.03145	1.03732	
13 79	0.041474	-0.05096	-1.79531	-1.22597	
14 79	-0.029261	-0.99614	0.15857	-2.82742	
15 79	-0.026074	-2.66668	1.52083	-1.22597	
16 79	0.013872	-1.74805	-2.48737	0.77692	

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI Z Atomu Yükü Koordinatları(Angstremlə)

Alınmış nəticələrin analizi növbəti mövzularda veriləcəkdir.

II FƏSİL. NANOSİSTEMLƏRİN TƏDQİQİ KOMPÜTER PROQRAMLARI

6.Vizual proqramlaşdırma riyazi modelin kompüter realizasiyası üçün əsas vasitə kimi

Məlumdur ki, Windows tərcümədə "pəncərələr" deməkdir. Pəncərə düzbucaqlı çərçivə olub Windows əməliyyat sisteminin əsas işçi elementidir. Bütün proqram pəncərələri oxşar struktur və tərkibə malikdir. Windows 7 ƏS-də Pəncərə aşağıdakı elementlərdən ibarətdir (Şəkil 6.1):

Şəkil 6.1. Windows Explorer proqramının pəncərəsi

Başlıq sətri – pəncərənin ən yuxarı hissəsi, burada adətən pəncərənin və ya proqramın adı yerləşir;

Pəncərənin gizlədilməsi üçün düymə;

Pəncərənin bərpası üçün düymə (görünüşü pəncərənin vəziyyətindən asılıdır);

Pəncərənin bağlanması üçün düymə;

Sistem menyusunun düyməsi – pəncərəyə aid sistem əməliyyatlarından ibarət menyunu açır;

Menyu sətri – pəncərəni idarə edən əməliyyatlar siyahısından ibarətdir;

Alətlər lövhəsi – tez-tez istifadə olunan əməliyyatları icra edən düymələrdən ibarət olur;

Scroll (lift) zolaqları– pəncərənin tərkibinə baxmaq üçün istifadə olunur;

Iş sahəsi – obyektlərin (mətn, şəkil və s.) yerləşdiyi və üzərində iş aparıldığı yer;

Status (vəziyyət) lövhəsi – vəziyyət indikatorlarının yerləşdiyi lövhə;

Pəncərənin çərçivəsi. Proqram pəncərəsi üç müxtəlif vəziyyətdə ola bilər:

Tam ekran – pəncərə ekranın tam boyuna bərabərdir;

Normal – pəncərə ekranın bir hissəsini tutur;

Gizlədilmiş – pəncərə görünməzdir.

Proqram pəncərəsinin 4 növü vardır:

1. Proqram pəncərəsi. Proqram pəncərəsi sərlövhə sətrinə, standart menyu sətrinə, alətlər panelinə və cari vəziyyət sətrinə malik olur. Pəncərənin ümumi görünüşü Görünüş (Vid, View) menyusu ilə tənzimlənir (Şəkil 6.2.). Sərlövhə sətrinin sol hissəsində pəncərənin adı (Qovluğun və ya proqramın adı), sağ küncündə isə idarəedici düymələr: pəncərəni bağlayan; pəncərənin ölçüsünü böyüdüb kiçildən;

-pəncərəni müvəqqəti qapayan düymələr yerləşir.

2. Dialoq pəncərəsi. Dialoq pəncərəsi(Şəkil 6.3) əməliyyat sisteminin və ya işlədilən proqramın bu və ya digər parametrlərinin dəyişdirilməsini və ya əlavə edilməsini, istifadəçi ilə dialoqu, xəbərdarlıq funksiyalarını yerinə yetirir. Dialoq pəncərədə yerləşən müxtəlif düymələrin, mətn sətrlərinin köməyilə yerinə yetirilir. Dialoq pəncərəsi bir neçə bölmədən ibarət olsun. Bir bölmədən digərinə keçid Başlıq düyməsi ilə həyata keçirilir. 3. Qovluq pəncərəsi. Qovluq pəncərəsində qovluqlar və fayllar əks olunur. Qovluqlar sarı rəngli nişanlara, fayllar isə tipinə müvafiq nişanlara malik olur (Şəkil 6.3).

Şəkil 6.2. NanoEngineer-1 proqram

4. Məlumat pəncərəsi. Məlumat pəncərəsi yardımçı məlumatlar almağa xidmət edir(Şəkil 6.4.). O bir neçə bölmədən ibarət ola bilər. Bu və ya digər məlumatı kursoru məlumatın adının üzərinə qoyub siçanın sol düyməsini sıxmaqla almaq olar. Məlumatı həmçinin Axtarış (Shearch) və ya Predmet göstəricisi (Index) başlıq düyməsini sıxıb açılmış bölmənin mətn sətrində axtarış göstəricisini (predmet göstəricisi və ya söz) qeyd etməklə almaq olar.

Şəkil 6.3.

Windows əməliyyat sistemlərində(Şəkil 6.1) çoxsaylı məsələ rejimi, yəni eyni vaxtda bir neçə proqram ilə işləməyi təmin edir. Proqram pəncərəsinin yerini dəyişməyə kursoru pəncərənin sərlövhə sətrinə qoyub siçanın sol düyməsini sıxıb buraxmamaq şərtilə hərəkət etdirməklə nail olmaq olar. Pəncərənin ölçülərini dəyişmək üçün isə kursoru pəncərənin sərhədinə qoyub, bu zaman kursor öz formasını dəyişib \leftrightarrow şəklini alacaqdır. Sonra siçanın sol düyməsini sıxıb hərəkət etdirmək lazımdır.

Pəncərələrin bağlanması: hər hansı bir proqramla işi başa çatdırmaq üçün onun pəncərəsini bağlamaq kifayətdir. Aktiv pəncərəni aşağıdakı üsullar ilə bağlamaq olar: Pəncərənin başlığında olan Close ($^{\times}$) düyməsi ilə; klaviaturadakı Alt+F4 düymələr cütü ilə; File menyusunda File \rightarrow Exit əmrini seçməklə; pəncərənin sistem menyusu siyahısından Close seçməklə.

Şəkil 6.4.

Şəkil 6.5. Windows 7 ƏS-nin İş stolu

Hal-hazırda hər hansi problemin öyrənilməsi üçün kompüterdə proqramların hazırlanması prosesində müasir vizual proqram vasitələrindən Delphi, MS Visual Studio və s. geniş istifadə olunur. Hər yeni problemin proqramının hazırlanması yeni proyektin(formanın) yaradılması ilə başlayır.

Programın hazırlanması ücün Bas, alt programlar yığımı və dinamik qoşula bilən proqram modullardan istifadə olunur. Hazırlanmış işləyən program yerləşmiş qovluqlarda icra olunma, dinamik qoşulma və s. digər koməkçi fayl tiplərinə malik fayllar səklində yerləşdirilir. Vizual programlaşdırmanın əsasında sinif anlayısı durur. Sinif verilən və metodların birlikdə istifadə olunması kimi təsəvvür etmək olar. Bunun köməyi ilə yeni obyektlər təyin olunur. Beləliklə yaradılan və işlədilən vizual obyektlərin istifadəsi müasir etibarlı program vasitələrinin yaradılması işini xeyli sadələşdirmişdir. Halvizual obyektlərin tətbiqi programların hazırda və yaradılmasında ən geniş istifdə olunan program vasitələrindən biri MS Visual Studio sistemidir(Səkil 6.6).

Şəkil 6.6. Visual Studio-nun əsas pəncərəsi

Bu proqramlaşdırma sistemi Microsoft kompaniyasına məxsus olub və daimə təkmilləşdirilir. MS Visual Studio sistemin aşağıdakı ümumi elementlərindən istifadə olunur: All windows Forms, Common controls, Containers, Menu & ToolBars, Data, Companents, Printing, Dialogs, Crystal Reports və General. Bu elementlər aktiv olaraq isifadə edilir.

Məlumdur ki, hal-hazırda nano guruluslu obyektlərin tədqiqi üçün onlarla müxtəlif programlar hazırlanmışdır. Müxtəlif dərəcədə belə obyektlərin öyrənilməsində istifadə bilər. Nano obyektlərin tədqiqi zamanı oluna lazımı kəmiyyətlərin hesablanması üçün öz programımızın olması daha vaxsı olardı. Bu baxımdan MS Vizual Studionun alətlərdən istifadə edərək nanohissəciyin morfologiyasının sferik formada olduğunu qəbul edərək, quruluşa daxil atomların sayını təqribi hesablamaq üçün riyazi düstur lazımdır. Məlumdur ki, nanohissəcik eyni və müxtəlif atomlardan təşkil ola bilər. Nanohissəcik eyni atomlardan təşkil olunmuşdusa atomların sayı $N = \frac{V_{nh}}{V}$ düsturu ilə hesablamaq olar. Burda V_{nh} - nanohissəciyin həcmi, Va - atomun həcmidir. Nanohissəcik sfera formasında olduğunu fərz etsək onda $V_{nh} = \frac{4}{3}\pi r^3$ və $V_a = \frac{4}{2}\pi r_a^3$. Burada $r = \frac{d}{2}$, d-nanohissəciyin ölçüsü və ra

 $v_a = \frac{1}{3} u_a^2$. Bulada $v = \frac{1}{2}$, dinaholissselyin olçusu və ra atomun radiusudur. Beləliklə eyni atomlardan təşkil olunmuş və sfera formasında olan nanohissəciklər üçün atomların sayını $N = \frac{r^3}{r^3}$ düsuru ilə hesablamaq olar. Bu düstur əsasında vizual

proqram hazırlayaq. Bunun üçün Vizual C# proqramlaşdırma dilində File \rightarrow New Project əmri ilə yeni proyekt yaradar. Proyektə ad verərək, proyekt üzərində sferanın diametri, atomların kovalent radiusların ortalanmış qiymətini daxil etmək və atomların sayını almaq üçün üç Label və üç TextBox alətlərini istifadə olunur. Atomların sayını tapmaq və yeni nanohissəcik üçün bu hesablamanı aparmaq üçün proqram düymələrini yaratmaq üçün Buttion alətindən isifadə olunur. Beləliklə nəticədə aşağıda proyekt formasını və nanohissəcikdə atomların sayını tapılması üçün proqramın mətnini almış olarıq:

```
private void button1 Click(object sender, EventArgs e)
       double Dnh, Ra, Rnh;
       int N:
       if ((textBox1.Text != "") && (textBox2.Text != ""))
       {
         Dnh = Convert.ToDouble(textBox1.Text);
         Ra = Convert.ToDouble(textBox2.Text);
         Rnh=Dnh/2:
         N = Convert.ToInt32((Rnh/Ra)*(Rnh/Ra));
         textBox3.Text = Convert.ToString(N);
       }
}
private void button2 Click(object sender, EventArgs e)
       textBox1.Clear();
       textBox2.Clear();
       textBox3.Clear();
}
```

Bu proqramla qızıl, gümüş, dəmir, aluminium və silisium atomlardan təşkil olunmuş nanohissəciklərin ölçülərinə görə atomlarının sayını hesablamaq olar.

Məsələ 1. Radiusu 0.179nm olan qizil atomlarından təşkil olunmuş və diametri 0.6nm nanohissəcikdə atomların sayını təqribi hesablayaq. Nəticədə N=21.

Məsələ 2. Radiusu 0.175 nm olan gümüş atomlarından təşkil olunmuş və diametri 1 nm nanohissəcikdə atomların sayını təqribi hesablayaq. Ilkin verilənləri daxil edərək nəticədə N=23 alarıq.

Məsələ 3. Radiusu 0.172 nm olan dəmir atomlarından təşkil olunmuş və diametri 1nm nanohissəcikdə atomların sayını təqribi hesablayaq. Ilkin verilənləri daxil edərək nəticədə N=196 alarıq.

Məsələ 4. Radiusu 0.161 nm olan aluminium atomlarından təşkil olunmuş və diametri 1nm nanohissəcikdə atomların sayını təqribi hesablayaq. Ilkin verilənləri daxil edərək nəticədə N=29 alarıq.

Məsələ 5. Radiusu 0.146 nm olan silisium atomlarından təşkil olunmuş və diametri 1nm nanohissəcikdə atomların sayını təqribi hesablayaq. Ilkin verilənləri daxil edərək nəticədə N=40 alarıq.

n sayda müxtəlif atomlardan təşkil olunmuş və sfera formasındakı nanohissəciklərdə atomların sayını təqribi hesablamaq üçün $N = \frac{V_{nh}}{V_{oa}}$ düsturundan istifadə oluna bilər. Burda V_{nh} - nanohissəciyin həcmi, V_{oa} - müxtəlif atomlardan təşkil olunmuş hissəciyin həcmidir. Nanohissəcik sfera formasında olduğunu fərz etsək onda $V_{nh} = \frac{4}{3}\pi r^3$ və $V_{0a} = \frac{4}{3}r_{or}^3$.

Burada $r = \frac{d}{2}$, d-nanohissəciyin ölçüsü, r_{or} - müxtəlif atomlardan təşkil olunmuş hissəciyin ortalanmış radiusunun ölçüsüdür. Beləliklə müxtəlif atomlardan təşkil olunmuş və sfera formasında olan nanohissəciklər üçün atomların sayını təqribi olaraq $N = \frac{r^3}{r_{or}^3}$ düsuru ilə hesablamaq olar. Bu düstur əsasında vizual proqram hazırlayaq(Məs., iki müxtəlif atomlardan təşkil olunmuş). Yuxarıdakı proqramın mətnində bəzi düzəlişlər edək və nəticədə aşağıdakı proqramın mətnini alarıq:

```
private void button1_Click(object sender, EventArgs e)
{
    double Dnh, Ror, Rnh;
    int N;
    if ((textBox1.Text != "") && (textBox2.Text != "") &&
        (textBox4.Text != ""))
    {
```

```
Dnh = Convert.ToDouble(textBox1.Text);
    Ror = Convert.ToDouble(textBox2.Text);
    Rnh=Dnh/2:
    N = Convert.ToInt32(Math.Pow(Rnh,3)/(Math.Pow(Ror,3)));
    textBox3.Text = Convert.ToString(N);
  }
}
private void button2_Click(object sender, EventArgs e)
  textBox1.Clear():
  textBox2.Clear();
  textBox3.Clear();
}
```

Programdan istifadə edərək bəzi nanohissəciklər üçün atomların ümumi və hər atomuun sayını hesablayaq.

Məsələ 4. Dəmir və oksigen atomlarının kovalent radiusları uyğun olaraq 0.117nm və 0.073nm olan dəmir və oksigen atomlarından təşkil olunmuş və diametri 10nm olan Fe₃O₄ nanohissəcikdə atomların sayını təqribi hesablayaq. Ilkin verilənləri daxil edərək nəticədə N=62794,

 $N_{Fe} = \frac{3}{7}N = \frac{3}{7}62794 = 26912$ və $N_O = \frac{4}{7}N = \frac{4}{7}62794 = 35882$ alarıq.

Məsələ 5. Zr və oksigen atomlarının kovalent radiusları uyğun olaraq 0.145nm və 0.073nm olan sirkonim və oksigen atomlarından təskil olunmus və ölcüsü 7nm olan ZrO2 nanohissəcikdə atomların sayını təqribi hesablayaq. Ilkin verilənləri daxil edərək nəticədə N=12473.

$$N_{Zr} = \frac{1}{3}N = \frac{1}{3}12473 = 4157 v_{\Theta} N_{O} = \frac{2}{3}N = \frac{2}{3}12473 = 8316$$

alaliq.

Məsələ 6. Sink və sulfid atomlarının kovalent radiusları uyğun olaraq 0.145nm və 0.102nm olan sirkonim və oksigen atomlarından təşkil olunmuş və ölçüsü 21nm olan ZnS nanohissəcikdə atomların sayını təqribi hesablayaq. Ilkin verilənləri daxil edərək nəticədə N=384040, $N_{Zn} = \frac{1}{2}N = 192020 v_{\theta} N_{S} = \frac{1}{2}N = 192020 alarıq.$

Məsələ 7. Kadium və sulfid atomlarının kovalent radiusları uyğun olaraq 0.148nm və 0.102nm olan sirkonim və oksigen atomlarından təşkil olunmuş və ölçüsü 3nm olan CdS nanohissəcikdə atomların sayını təqribi hesablayaq. Ilkin verilənləri daxil edərək nəticədə N=784, $N_{Cd} = \frac{1}{2}N = 392 v_{\Theta}$

 $N_{\rm S} = \frac{1}{2}N = 392$ alarıq.

Məsələ 8. Kadium və Se atomlarının kovalent radiusları uyğun olaraq 0.148nm və 0.116nm olan sirkonim və oksigen atomlarından təşkil olunmuş və ölçüsü 3nm olan CdSe nanohissəcikdə atomların sayını təqribi hesablayaq. Ilkin verilənləri daxil edərək nəticədə N=702, $N_{Cd} = \frac{1}{2}N = 351 və$ $N_{S} = \frac{1}{2}N = 351$ alarıq. Beləliklə sadə hazırlanmış

proqramların tətbiqindən göründüyü kimi fundamental tədqiqat işləri zamanı vizual proqramlaşdırmanın zəruriliyi hiss olunur və onun nanotexnologiya sahəsində əsas vasitə kimi geniş tətbiqi hazırkı zamanın işidir.

7. Nanosistemlərin modelləşdirilməsinin əsas tipləri

Hər hansı yeni nanoobyekti yaratmaq üçün əvvəlcə onun quruluşu və hazırlanması texnologiyası ətraflı öyrənilir. Nəzərə alınsa ki, belə quruluşu görmək belə mümkün olmadığına görə bunu necə etməli? Nanosistemləri tədqiq etmək üçün onların nəzəri modellərindən istifadə olunur. Modellər müxtəlif ola bilər. Məlumdur ki, atomlar mürəkkəb fiziki obyekt olub özünə məxsus qanunlar daxilində

adətən mövcuddur. Nanotexnologiyada istifadə olunan kompüter modellərində kvant fizikasının qanunlarından istifadə rivazi aparata əsaslanan kompüter olunur. Güclü modelləsdirməsi nanoobyektlərin hazırlanmasında əsas rol oynayır. Müxtəlif peşə sahibləri,- təhsil, elm, mühəndis. dizayner və arxitektorlar və s. öz islərində kompüter modelləşdirmədən geniş miqyasda istifadə edirlər.

Hal-hazırda nanotexnologiyada isə adi məsələlərə oxşar olaraq yüksək dəqiqliklə kvant qanunlarına əsaslanan nanoobyektlərin modelləşdirilməsi və kompüter hesablanması geniş tətbiq olunur.

Hal-hazırda nanotexnologiyada riyazi modelləşdirmənin bir neçə tipləri istifadə olunur:

Vizual (RasMol proqramı), Hesablama (Chem3D, HyperChem və NanoEngineer-1 proqramları) və Mühəndis (NanoEngineer-1, NanoXplorer proqramı) kompüter modelləşdirməsi.

Vizual kompüter modelləşdirməsi

Bu modelləşdirmə zamanı üçölçülü koordinat sistemində nanoquruluşlu sistemlərin yaradılmış formalarını vizual müşahidə etmək olar. Bu zaman nanoquruluşa baxmaq, onları müxtəlif vəziyyətlərdə müşahidə etmək, sistemə daxil olan obyektləri və əlaqəni görmək olar(Şəkil 7.1, 7.2).

Hesablama modelləşdirməsi

Hər hansı qurulmuş nanoquruluşlu modellərə baxmaq maraqlıdır. Ancaq daha çox maraqlı olardı ki, bu modelləri hər mütəxəssis özü qurmuş olsun. Bunun bir ücün kvant molekulyar dinamikanın metodlarından, mexanikası və müxtəlif statistik yanaşmalara əsaslanan rivazi modelləşdirmədən istifadə olunur. köməyi Bunun ilə nanoobyektin nəinki ücölmülü modelini, həmcinin onun temperatur, elektromaqnit sahəsi və başqa təsirlər olarkən özünü necə aparmasını müşahidə etmək olar.

Hesablama modelləşdirmdə istifadə olunan müasir proqramlardan biri HyperChem (demo versiyası isifadə olunur) proqramıdır, bu Şəkil 7.1-də göstərilmişdir. Proqramın sadə qrafiki interfeysə malik olması, onun geniş miqyasda istifadə olunmasına iimkan verir. Proqramdan istifadə edərək müxtəlif nanoquruluşlu obyektləri qurmaq və proqramın köməyi ilə enerjinin minimumluq şərtinə görə real obyektin modelini yaratmaq olar. Məsələn karbon atomlarından təşkil olunmuş qrafenin HyperChem proqramı vasitəsi ilə qurulmuş visual modelləri aşağıdakı kimidir:

Şəkil 7.1. HeperChem proqramında füllerenin modeli

Contractory of a particular		10. 17. 20.0
The life from band line descent	family into the second second second second second	
ARNAXORX	因素素於公司(數金)因合体、因(個)或 物质	非当ち命列的命事
●王臣臣臣 臣 日中心	医小子骨骨骨骨骨下 电电电电电电电 气	* 8 / 4 / / 1
AL C	· · · · · · · · · · · · · · · · · · ·	N
8.14	and the second second	
Enert Nambles		
V X 2		
		And Andrews
The bitter manifer they got	* HANKERSCHERKER	
A Contraction of the second		
Manufactor (1979)		AAAAAAA
1.54 (100)	Astatatatatatatatatata	Statatatat
THERE ARE ADDRESS.	190919393939393939393939393	
1000 C		
Bellage		
Fill House -		<u>8</u>
Reptil Commercial Color		9
Contraction for	-	0
997.		FR 0
The second secon	Construction of the Constr	
A DOWNED THE PERSON NOT THE REPORT OF	Contraction of the second second second second second second second second second second second second second s	1.00
a to a reason		
	and and a second second second second second second second second second second second second second second se	monthum, one Managania - Sa
ALC: NO. OF ALC: NO. OF ALC: NO.		

Şəkil 7.2. Nanoborunun viziual modeli

Şəkil 7.3. Qrafenin viziual modeli

Şəkil 7.4. Qrafenin modelləri

Hal-hazırda müxtəlif üsullarla nanoobyektləri öyrənmək olar. Məsələn, molekulyar dinamika metodu imkan verir ki, nanoquruluşlu obyekti "qızdırmaq", elektromaqnit sahəsi ilə təsir edərək obyektin dinamikasına baxmaq olar. Məsələn C₆₀ fülleren nanoquluşunun müxtəlif temperaturda zamandan asılı olaraq tədqiqi aşağıdakı nəticələri verir:

1. 0-dan başlayar 0.001 addımı ilə 1ps qədər zaman müddətində temperaturun T=10K qiymətində aparılmış kompüter hesablaması nəticəsində müəyyən olunur ki, C₆₀ fülleren daxil olan karbon atomlarının həyəcanlanması baş verdiyinə baxmayaraq, öz stabil formasını saxlayaraq və heç bir fırlanma hərəkəti müşahidə olunmur.

2. 0-dan başlayar 0.001 addımı ilə 1ps qədər zaman müddətində temperaturun T=300K qiymətində aparılmış kompüter hesablaması nəticəsində müəyyən olunur ki, karbon atomlarının həyəcanlanması baş verir, öz stabil formasını saxlayaraq və saat əqrəbinin əksi istiqamətində fırlanma hərəkəti müşahidə olunur.

3. 0-dan başlayar 0.001 addımı ilə 1ps qədər zaman müddətində temperaturun T=300K qiymətindən böyük qiymətlərdə aparılmış kompüter hesablamaları nəticəsində aşağıdakılar müəyyən olunur:

T=1000K füllerenə daxil olan karbon atomları həyəcanlanmasının mütəhərrikliyi artır, səthin deformasiya olumasına baxmayaraq, bu nanoquruluş öz stabil formasını saxlayaraq və saat əqrəbinin əksi istiqamətində fırlanma müşahidə olunur.

T=2000K fülleren nanoquruluşuna daxil olan karbon atomları temperaturun artması nəticəsində atomların həyəcanlanması mütəhərrikliyi daha artmış olur, səthin deformasiya olunması aydın hiss olunmaqla, bu nanoquruluş öz stabil formasını saxlayaraq və saat əqrəbinin əksi istiqamətində firlanma müşahidə olunur.

4.Temperaturun daha yüksək T=6000K qiymətində HyperChem və NanoEngineer-1 proqramları ilə aparılmış hesablamalar(Şəkil 7.5) təsdiq edir ki, C₆₀ fülleren yüksək temperatura davamlı olduğunu göstərir.

Şəkil 7.5. Hesablamaların nəticələri(HyperChem və Nanoengineer-1)

5.Temperaturun daha yüksək T=50000K qiymətində HyperChem və NanoEngineer-1 proqramları ilə aparılmış hesablamalar(Şəkil 7.5) təsdiq edir ki, C₆₀ füllerenin quruluşunun dağılması müşahidə olunur.

Mühəndis modelləşdirməsi

Nanoobyekti yaratmaq və sonra isə müxtəlif testlər əsasında təcrübə işində mühəndis nanotexnoloqa kömək edən müxtəlif proqramlar vardır. NanoTitan kompaniyası nanoquruluşları təsvir etmək üçün iyerarxiv nanoML dilini hazırlamışdır(XML dili əsasında). Bunun köməyi ilə nanoobyektin molekulyar səviyyədə təsvir etmək, həmçinin onun əsas elektrik, optik və maqnit fiziki xassələrini və tətbiqi haqqında informasiya əldə etmək olar. Nanoqurğuların modeli ayrı-ayrı nanosistem və molekulyar maşınlar vasitəsilə təsvir olunur və bu öz növbəsində molekullar yığımına, nanoborulara çevrilir. nanoML dilində işləməyi asanlaşdırmaq üçün NanoXplorer proqramı yaradılmışdır. Bu proqram müxtəlif nanoqurğular yaratmağa imkan verir. Nanoqurğuları proyektləşdirmək bu proqramda digər proqramlardan daha sadə olub, işləmək çox asandır. NanoXplorer proqramının ümumi görünüşü aşağıdakı kimidir:

Şəkil 7.6. NanoXplorer proqramı

NanoXplorer proqramının köməyi ilə çoxlu sayda müxtəlif və çoxfunksiyalı nanosistemlər hazırlanmışdır(Şəkil 7.7.-ə bax):

Şəkil 7.7. Nanosistemlərin modelləri. a) Ne atomları üçün nanonasos,
b) nanomanipulyator, v) karbon atomlarından ibarət nanopodşibnik

NanoEngineer-1 proqramı müasir dövrdə daha geniş tətbiq olunan proqramlardan biridir. Bu proqramın ümumi görünuşu Şəkil 7.8 –də verilmişdir.

Şəkil 7.8. NanoEngineer-1 proqramı

Molkulyar dinamika metoduna əsaslanan proqram olub nanoobyektlərin qurulması və tədqiqi üçün əvəzsiz bir vasitədir. Bunun köməyi ilə nanoölçülü obyektləri yaratmaq və tədqiqi etmək olar. Artıq yüzlərlə nanoölçülü obyektlər yaradılmışdır və təhsil və elmin müxtəlif sahələrində istifadə olunur. Biokimya, fülleren, nanoavtomobil, nanoboru, nanonasos, nanomexanizmlər, orqanik kimya, funksional qrup, və s. kimi(Bearings, biochemistry, bushings, casings, couplings, fullerenes, functional groups, gears, moieties, nanocars, nanokids, nanotubes, neon pump, organic chemistry) oyektlər artıq qurulmuşdur və tədqiq olunur.

Hal-hazırda nanoquruluşların modelləşdirilməsi kompüterlərin imkanlarından çox asılıdır. Kompüter nə qədər sürətli məhsuldar işləyərsə, onda onun üçün hazırlanmış proqram vasitəsilə daha mürəkkəb nanosistemləri proyektləşdirmək olar(Şəkil 7.9).

Şəkil 7.9. Nanoavtomobil, nanoboru, nanomexanizm və nanonasos

Hal hazırda bir neçə atomdan ibarət nanoquruluşu tədqiq etmək üçün kompüter vasitəsi ilə çoxlu sayda əməliyyat aparılması tələb olunur. Məhz buna görə də yüksək məhsuldar kvant kompüterlərin yaradılmasına zərurət yaranır. Bu yaxın gələcəyin işidir. İlk kvant kompüterlərin yaradılması 2034 ilə proqnoz edilir.

8. Mathcad programi

Nanosistemlərin öyrənilməsi zamanı müxtəlif kəmiyyətlərin ədədi qiymətlərinin kompüterdə hesablanması və qrafiklərinin qurulması bəzi hallarda zəruridir. Bunun üçün müxtəlif proqram paketlərindən istifadə oluna bilər. Belə proqramlardan biri ümumi riyazi Mathcad proqramıdır. Proqramın ümumi görünüşü aşağıdakı kimidir:

Şəkil 8.1. Mathcad Proqramı

Mathcad proqramının pəncərəsi başlıq, menyu,- File -Fayl, Edit - Düzəliş, View - Görünüş, Insert - Əlavə Et, Format - Format, Math -Riyazi, Simbolics - Simvolik, Window -Pəncərə və Help - Kömək, standart, formalaşdıran, riyazi və xətkeş sətirlərindən, işçi sahədən və vəziyyət sətrindən ibarətdir. Proqramın işçi sahəsinə üfüqi və şaquli elektron səhifələr, üfüqi və şaquli liftlər daxildir. Bu proqram vasitəsilə müxtəlif hesabi və cəbri hesablamalar, ifadələr üzərində əməllər, funksiyaların qiymətlərini hesablamağa, qrafiklərin qurulması və vizualizasiyası; vektor və matrislər üzərində təyin olunmuş əməllərin yerinə yetirilməsi; sadə, qeyri xətti tənlik və tənliklər sistemini həll etmək, funksiyaların ixtiyari tərtibdən törəmələrinin tapılması, müəyyən və qeyri müəyyən inteqralların hesablanması, diferensial tənliklərin həlli, funksiyalar və xüsusi funksiyalar yığımı, proqramlaşdırma dilinin operatorları, simvolik ifadələrin sadələşdirilməsi və zəruri əməllərin yerinə yetirilməsi və i.a. imkanlarına malik olub və kalkulyator, qrafik qurma, vektor və matris, təyinetmə, hesablama, məntiqi, proqramlaşdırma, yunan simvolları və simvolik hesablama alətləri vardır(Şəkil 8.2.).

İşləmək üçün proqramı başlatmaq lazımdır. Yeni sənədi yaratmaq üçün isə File->New əmrindən istifadə olunur. İşçi sahə hissəsində kursorun işarəsi(qırmızı rəngli) " + " formasındadır. Konkret olaraq aşağıdakı məsələyə baxaq və bu riyazi proqramın imkanlarından isifadə edərək onu həll edək.

Atom-quvvə mikrospunda skanedicinin məxsusi rezonans tezliyini qiymətləndirilməsi

Bunun üçün bir tərəfi möhkəm bərkidilmiş çubuğun X, Z müstəvisində eninə rəqslərinin əsas harmonik tezliyinin ifadəsindən istifadə edilir:

$$\omega = \frac{1}{2\pi} \frac{(1,875)^2}{\ell^2} \sqrt{\frac{EI_Y}{m}}$$

burada $I_{Y}(z)$ - z oxuna nəzərən uzununa ətalət momenti, ℓ uzunluq, m-kütlə, $E = c^{2}\rho$ -Yung modulu, c – pyezomaterialda səsin sürəti, ρ -pyezokeramikanın sıxlığıdır. Uzunluğu - ℓ , radiusu - R və divarının qalınlığı - h olan içi boş silindir üçün ətalət momenti

$$I_Y(R) = \frac{\pi R^4}{2} \left[1 - \left(\frac{R-h}{R}\right)^4 \right]$$

düsturu vasitəsilə hesablanır. $\ell = 30$ mm, h = 1mm, m=10q, R = 6mm, c = 3,3*10³ m/san, $\rho = 7q/sm^2$ qiymətləri üçün ω hesablayaq. Mathcad proqram paketindən istifadə etdikdə ilk növbədə verilənləri, ifadələri və sonra funksiyalar təyin etmək lazımdır. Bunun üçün adlanmanı yazib təyin etmə " := " işarəsindən isifadə etmək lazımdır. Müəyyən hesablamaları aparmaq üçün isə " = " Bunları Mathcad proqramında aşağıdakı kimi yerinə yetirmək olar:

Şəkil 8.2. Proqramın alətləri

 $1 := 30 \cdot 10^{-3}$ $m := 10 \cdot 10^{-3}$ $h := 1 \cdot 10^{-3}$

 $R := 6 \cdot 10^{-3}$ $c := 3.3 \cdot 10^{3}$ $\rho := 70$

R = 0.006

$$\omega(\mathbf{R}) := \frac{1}{2\pi} \cdot \frac{(1.875)^2}{l^2} \cdot \sqrt{\mathbf{E} \cdot \frac{\mathrm{Iy}(\mathbf{R})}{\mathrm{m}}} \qquad \omega(\mathbf{R}) = 215.131$$
$$\mathbf{R} := 0.001, 0.001 + 0.1 \dots 10$$

Qiymətlərində $\omega(R)$ və Iy(R) kəmiyyətlərinin qrafiklərini qurmaq üşün aşağıdakı əmrlərdən istifadə olunur:

Grafiklərin bizə lazım olan formada alınması üçün uyğun qrafik seçilir və sonra Format \rightarrow Graph \rightarrow X-Y Plot əmrindən istifadə etmək lazımdır. Nəticədə aşağıdakı qrafiklər alınar:

AQM-də atomlararası qarşılıqlı təsir qüvvəsinin qiymətlərinin kompüterdə hesablanması və qrafik qurulması

AQM-də atomlar arası F qarşılıqlı təsir qüvvəsinin atomlar arasındakı R məsafəsindən asılılığı

$$F(R) = -\frac{6A}{R^m} + \frac{12B}{R^n}$$

kimidir. Burada A, B Leonard-Conson sabitləridir və m və n qüvvət göstəriciləri atomların və kimyəvi rabitələrin növündən asılıdır. Van-der-Vaals cazibə qüvvələri üçün m=7, üçün n≈13:

$\begin{split} R &:= 0.001 \cdot 10^{-9}, 0.001 \cdot 10^{-9} + 0.01 \cdot 10^{-9} \dots 100 \cdot 10^{-9} \\ F(R) &:= \frac{-6 \cdot A}{R^7} + \frac{12 \cdot B}{R^{13}} \\ R &= & F(R) = \\ \hline \begin{array}{c} 0.000000000001\\ 0.00000000001\\ 0.0000000000$	A := 96.10 ⁻⁷	79 B := 1	0 ⁻¹³⁴
$\begin{split} F(R) &:= \frac{-6 \cdot A}{R^7} + \frac{12 \cdot B}{R^{13}} \\ R &= & F(R) = \\ \hline \hline 0.00000000001 \\ \hline 0.00000000001 \\ \hline 0.00000000001 \\ \hline 0.00000000001 \\ \hline 0.00000000001 \\ \hline 0.00000000001 \\ \hline 0.00000000001 \\ \hline 0.00000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.0000000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000001 \\ \hline 0.00000000001 \\ \hline 0.00000000001 \\ \hline 0.00000000001 \\ \hline 0.000000000001 \\ \hline 0.000000000000000000000000000000000$	$R := 0.001 \cdot 10^{-10}$	$^{-9}, 0.001 \cdot 10^{-9} + 0.01 \cdot 10^{-9} \dots 1$	00.10 ⁻⁹
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$F(R) := \frac{-6 \cdot A}{R^7}$	$+\frac{12\cdot B}{R^{13}}$	
0.00000000001 1.2:10 ²³ 0.000000000011 3.47597255388446:10 ⁶ 0.00000000021 7.76837884003658:10 ⁵ 0.00000000031 4.91449662541826:10 ³ 0.000000000041 1.29714975653745:10 ² 0.000000000051 7.59915474988612:10 ⁰ 0.00000000061 7.41109961446468:10 ⁻¹ 0.00000000061 7.4110990225232947:10 ⁻¹ 0.00000000081 1.85702230858212:10 ⁻² 0.00000000091 4.08813050176079:10 ⁻³ 0.000000000111 3.08739671364755:10 ⁻⁴ 0.000000000121 1.0534864663408:10 ⁻⁴ 0.000000000131 3.5776642147551:10 ⁻⁵ 0.000000000141 1.37306654334876:10 ⁻⁵	R =		F(R) =
0.00000000011 3.47597255388446.10 ⁶ 0.00000000021 7.76837884003658.10 ⁵ 0.00000000031 4.91449662541826.10 ³ 0.000000000041 1.29714975653745.10 ² 0.000000000051 7.59915474988612.10 ⁰ 0.00000000061 7.41109961446468.10 ⁻¹ 0.000000000071 1.02990225232947.10 ⁻¹ 0.000000000081 1.85702230858212.10 ⁻² 0.00000000001 1.0538578735274.10 ⁻³ 0.00000000011 3.08739671364755.10 ⁻⁴ 0.000000000121 1.00534864663408.10 ⁻⁴ 0.00000000131 3.57766421475515.10 ⁻⁵ 0.00000000141 1.37306654334876.10 ⁻⁵	0.000000000001		1.2·10 ²³
0.00000000021 7.76837884003658·10 [±] 0.00000000031 4.91449662541826·10 ³ 0.000000000041 1.29714975653745·10 ² 0.00000000051 7.59915474988612·10 ⁰ 0.00000000061 7.41109961446468·10 ⁻¹ 0.000000000061 7.41109961446468·10 ⁻¹ 0.00000000001 1.85702230858212·10 ⁻² 0.00000000001 1.0538578735274·10 ⁻³ 0.00000000001 1.0538578735274·10 ⁻³ 0.00000000011 3.08739671364755·10 ⁻⁴ 0.000000000121 1.00534864663408·10 ⁻⁴ 0.00000000131 3.5776642147551·10 ⁻⁵ 0.00000000141 1.37306654334876·10 ⁻⁵	0.00000000011		3.47597255388446·10 ⁹
0.00000000031 4.91449662541826·103 0.000000000041 1.29714975653745·102 0.00000000051 7.59915474988612·100 0.00000000061 7.41109961446468·10·1 0.00000000001 1.02990225232947·10·1 0.00000000081 1.85702230858212·10·2 0.00000000091 4.08813050176079·10·3 0.00000000011 1.0538578735274·10·3 0.000000000121 1.00534864663408·10·4 0.00000000131 3.5776642147551·10·5 0.00000000141 1.37306654334876·10·5	0.00000000021		7.76837884003658·10 ⁵
0.00000000041 1.29714975653745·102 0.00000000051 7.59915474988612·100 0.00000000061 7.41109961446468·10·1 0.000000000071 1.02990225232947·10·1 0.00000000081 1.85702230858212·10·2 0.00000000091 4.08813050176079·10·3 0.000000000101 1.0538578735274·10·3 0.000000000111 3.08739671364755·10·4 0.00000000121 1.00534864663408·10·4 0.00000000131 3.5776642147551·10·5 0.00000000141 1.37306654334876·10·5	0.00000000031		4.91449662541826·10 ³
0.00000000051 7.59915474988612-100 0.00000000061 7.41109961446468-10-1 0.00000000071 1.02990225232947-10-1 0.00000000081 1.85702230858212-10-2 0.00000000091 4.08813050176079-10-3 0.000000000101 1.0538578735274-10-3 0.000000000111 3.08739671364755-10-4 0.000000000121 1.00534864663408-10-4 0.00000000131 3.57766421475515-10-5 0.00000000141 1.37306654334876-10-5	0.000000000041		1.29714975653745·10 ²
0.00000000061 7.41109961446468:10 0.000000000071 1.02990225232947:10 0.00000000081 1.85702230858212:10 0.00000000091 4.08813050176079:10 0.000000000101 1.0538578735274:10 0.000000000111 3.08739671364755:10 0.000000000121 1.00534864663408:10 0.00000000131 3.5776642147551:10 0.00000000141 1.37306654334876:10	0.00000000051		7.59915474988612·10 ⁰
0.00000000071 1.02990225232947.10 ⁻¹ 0.00000000081 1.85702230858212.10 ⁻² 0.00000000091 4.08813050176079.10 ⁻³ 0.000000000101 1.0538578735274.10 ⁻³ 0.000000000111 3.08739671364755.10 ⁻⁴ 0.000000000121 1.00534864663408.10 ⁻⁴ 0.00000000131 3.57766421475515.10 ⁻⁵ 0.00000000141 1.37306654334876.10 ⁻⁵	0.00000000061		7.41109961446468.10 -1
0.0000000081 1.85702230858212:10 -2 0.00000000091 4.08813050176079:10 -3 0.000000000101 1.0538578735274:10 -3 0.000000000111 3.08739671364755:10 -4 0.00000000121 1.00534864663408:10 -4 0.00000000131 3.57766421475515:10 -5 0.00000000141 1.37306654334876:10 -5	0.000000000071		1.02990225232947.10 -1
0.00000000091 4.08813050176079·10 ⁻³ 0.00000000101 1.0538578735274·10 ⁻³ 0.00000000111 3.08739671364755·10 ⁻⁴ 0.000000000121 1.00534864663408·10 ⁻⁴ 0.000000000131 3.57766421475515·10 ⁻⁵ 0.000000000141 1.37306654334876·10 ⁻⁵	0.00000000081		1.85702230858212.10 -2
0.00000000101 1.0538578735274:10 0.000000000111 3.08739671364755:10 0.000000000121 1.00534864663408:10 0.000000000131 3.57766421475515:10 0.000000000141 1.37306654334876:10	0.000000000091		4.08813050176079·10 -3
0.00000000111 3.08739671364755·10 0.00000000121 1.00534864663408·10 0.00000000131 3.57766421475515·10 0.00000000141 1.37306654334876·10	0.000000000101		1.0538578735274·10 -3
0.00000000121 1.00534864663408·10 ⁻⁴ 0.00000000131 3.57766421475515·10 ⁻⁵ 0.00000000141 1.37306654334876·10 ⁻⁵	0.000000000111		3.08739671364755.10 -4
0.00000000131 0.00000000141 3.57766421475515·10 ⁻⁵ 1.37306654334876·10 ⁻⁵	0.00000000121		1.00534864663408.10 -4
0.00000000141 1.37306654334876-10 -5	0.00000000131		3.57766421475515·10 -5
	0.00000000141		1.37306654334876·10 -5
0.00000000151 5.6234494032566·10 -6	0.00000000151		5.6234494032566·10 -6

a := 0.001 · 10 ⁻⁹	$h := 0.01 \cdot 10^{-9}$	b := 100·10 ⁻⁹	$N := \frac{b-a}{h}$	
i := 0N - 1	$x_i := a + h \cdot i$			

$$y_i := x_i \cdot 10^5$$

$$F2_i := 10^9 \cdot F(x_i)$$

	is h	0
	0	0.001
	1	0.011
	2	0.021
	3	0.031
	4	0.041
	5	0.051
	6	0.061
y =	7	0.071
	8	0.081
	9	0.091
	10	0.101
	11	0.111
	12	0.121
	13	0.131
	14	0.141
	15	0.151

		0
	0	1.2.10.32
	1	3.47597255388446 10 18
	2	776837884003658
	3	4914496625418.26
	4	129714975653.744
	5	7599154749.8861
	6	741109961.44647
F2 =	7	102990225.232947
	8	18570223.0858212
	9	4088130.5017608
	10	1053857.8735274
	11	308739.671364756
	12	100534.864663408
	13	35776.6421475515
	14	13730.6654334876
	15	5623 44940325659

Şəkil 8.2. Atomlar arası qarşılıqlı təsir F qüvvəsinin atomlar arası R məsafəsindən asılılıq qrafiki

9. HyperChem proqramı

ki. Məlumdur müasir dövrdə qeyri empirik kvantmexaniki, yarım-emprik, molekulyar dinamika və s. metodları mürəkkəb nanosistemlərin elektron və atom auruluslarının riyazi modelləşdirilməsində genis tətbiq olunmaq imkanına malikdir. Bu imkanlar uyğun program paketlərinin olması və texnoloji inkişafı ilə əlaqədardır.

Hal-hazırda qeyri empirik kvantmexaniki, sıxlıq funksionalı nəzəiyyəsi, yarım-emprik, molekulyar dinamika və s. metodlarını realizasiya edən kifayət qədər çoxlu sayda müasir kompüter proqramları hazırlanıb və istifadə olunur. Modelləşdirmə üçün elm və təhsildə istifadə olunan HyperChem və NanoEngineer-1 proqramları daha münasibdır. HyperChem istifadə üçün münasib, əlverişli və sadədir. Proqramın ümumi görünüşü aşağıdakı kimidir:

ThyperChem (untilled)		
File Edit Buld Select Display Databases Secur Compute Amotations Script Cancol Help		
CHERCIFICATE ALLOID CINION DISC XING STOP		-
		100000
Catonias the program	- Carlos	Ab 2480

Şəkil 9.1. HeperChem proqramı

HyperChem proqramının pəncərəsinə aşağıdakı menyu, alətlər, işçi sahə və vəziyyət sətri daxildir. Proqramın menyusuna daxildir:

File	Edit	Build	Select	Display	Databases	Setup	Compute	Annotations	Script	Cancel	Help
File)]	Fayl					
Edi	t]	Düzə	liş				
Bui	ld				(Obye	ktlərin	yaradıln	nası		
Sele	ect					Seç					
Dis	play	y			,	Təsvi	r et				
Dat	aba	ise]	Baza	verilər	nləri			
Set	up				(Quras	şdır				
Coi	npu	ite]	Hesal	bla				
Anı	nota	atior	1S			İzahla	ar				
Scr	ipt					Skrip	t				
Car	ncel]	İmtin	a				

Help	Kömək
Alətlər panelir ⊕©⊈Ø⊕⊻	nə daxildir. S I A O C N O X D B H & B B S R
Ð	- Obyektin quruluşunu çəkmə
$\underline{\bigcirc}$	- Seç
ę	- Obyekti ixtiyarı istiqamətdə fırlatma
\mathcal{Q}	- Görünüş üzrə fırlatma
\Leftrightarrow	- yerini dəyişmə
	- Z-çevirmə
8	- Modelin Şəklin böyüdülməsi və kiçildilməsi
Г	- Kəsmə
A	- Izahvermə mətni
\geq	- xətt çək
<u> </u>	- çevrə çək
	- düzbucaqlı çək
C	- karbon atomunu qur
N	- Azot atomunu qur

- Oksigen atomunu qur

- Obyektin yaradılmasına kömək et və s.

Yeni obyektin tədqiqi üçün yeni obyektin və quruluş ad.hin faylının yaradılması başlanır. Bunun üçün zəruri alətlər və uyğun əmrləri seçməklə File→Save As yerininə yetirilir:

📆 Save File	×
Папка: 🚺 HyoerChem-2012 💌	← 🗈 📸 🖬 ▾
Имя	Дата изменения 🔺
📄 afet zn4s8	11/23/2012 9:41 AM
afet zns	11/23/2012 9:44 AM
ag5	12/6/2012 10:47 AM
al3	12/6/2012 12:09 PM
🔳 alh	11/21/2012 1:02 PM 👻
•	•
Имя файла: ad	Сохранить
Тип файла: HyperChem (*.HIN)	• Отмена
HIN Options PDB Option	s
🗌 Velocities 🗌 Hydroge	ens
Connec Comments:	tivity
	*
	-
1	

Hesablamaların nəticəsini saxlamaq üçün File→Start Log əmri ilə ad.log faylı yaradılır:

📜 Start Log	X
Папка: 📔 HyoerChem-2012 💌	- 🗈 📸 🎟 -
Имя	Дата изменения 🔺
Afer zns 1	11/23/2012 10:01
📄 afet2 zn4s8	11/23/2012 9:29 AM
🛅 ag5	12/6/2012 10:58 AM
alh-6	10/10/2012 4:10 PM
alh-10102012	10/10/2012 12:17 👻
✓ III.	4
Имя файла: ad	ОК
Тип файла: Log(*.LOG)	▼ Отмена
Mechanics Print Level: 0 Quantum Print Level: 0	Append

Məsələn C_{60} fülleren üçün qurulmuş vizual model aşağıdakı kimidir:

Şəkil 9.2. Füllerenin vizual modeli

Fülleren üçün quruluş və kompüterdə aparılmış hesablamanın nəticəsi fayllarının məzmunu aşağıdakı kimidir:

Buckminsterfullerene forcefield mm+ sys 0 0 1 view 40 0.16312 55 15 1 0 0 0 1 0 0 0 1 5.2851 -6.5255 -53.282 seed -1111 mol 1 atom 1 - C CA - 0 -6.498399 5.824873 1.456922 3 2 a 6 a 7 a atom 2 - C CA - 0 -6.498399 7.225 1.456922 3 1 a 3 a 9 a atom 3 - C CA - 0 -5.285984 7.924989 1.456922 3 2 a 4 a 11 a atom 4 - C CA - 0 -4.073571 7.225002 1.456922 3 3 a 5 a 12 a atom 5 - C CA - 0 -4.073571 5.824977 1.456922 3 4 a 6 a 15 a atom 6 - C CA - 0 -5.285718 5.124731 1.456922 3 5 a 1 a 17 a atom 7 - C CA - 0 -7.556101 5.392268 0.6482528 3 1 a 8 a 19 a atom 8 - C CA - 0 -8.209916 6.525048 0.1483769 3 7 a 9 a 20 a atom 9 - C CA - 0 -7.55669 7.657858 0.6487809 3 8 a 2 a 10 a atom 10 - C CA - 0 -7.40211 8.790651 -0.1597567 3 9 a 59 a 57 a atom 11 - C CA - 0 -5.131682 9.057729 0.6487823 3 3 a 29 a 59 a atom 12 - C CA - 0 -3.16986 7.92495 0.6487833 3 4 a 13 a 29 a atom 13 - C CA - 0 -2.266209 7.224931 -0.1594827 3 12 a 14 a 39 a atom 14 - C CA - 0 -2.265947 5.825442 -0.1589145 3 13 a 15 a 28 a atom 15 - C CA - 0 -3.169365 5.124714 0.6492094 3 14 a 5 a 16 a atom 16 - C CA - 0 -3.823216 3.992284 0.1490938 3 15 a 17 a 26 a atom 17 - C CA - 0 -5.131246 3.992251 0.648391 3 16 a 6 a 18 a atom 18 - C CA - 0 -6.189142 3.559773 -0.1599417 3 17 a 19 a 24 a atom 19 - C CA - 0 -7.400437 4.260026 -0.1603605 3 18 a 7 a 22 a atom 20 - C CA - 0 -8.708728 6.525345 -1.159735 3 8 a 21 a 56 a atom 21 - C CA - 0 -8.552192 5.393007 -1.968461 3 20 a 22 a 54 a atom 22 - C CA - 0 -7.89917 4.260137 -1.468407 3 21 a 19 a 23 a atom 23 - C CA - 0 -6.996901 3.559793 -2.276227 3 22 a 24 a 52 a atom 24 - C CA - 0 -5.938855 3.127534 -1.46781 3 23 a 18 a 25 a atom 25 - C CA - 0 -4.63133 3.128472 -1.967978 3 24 a 26 a 50 a atom 26 - C CA - 0 -3.573205 3.560246 -1.159036 3 25 a 16 a 27 a atom 27 - C CA - 0 -2.669563 4.260638 -1.96654 3 26 a 28 a 49 a atom 28 - C CA - 0 -2.015668 5.393104 -1.466823 3 27 a 14 a 38 a atom 29 - C CA - 0 - 3.82369 9.057609 0.1492508 3 12 a 11 a 58 a atom 30 - C CA - 0 -3.016556 7.65849 -4.083593 3 31 a 37 a 60 a atom 31 - C CA - 0 -3.169521 8.790795 -3.274694 3 30 a 32 a 40 a atom 32 - C CA - 0 -4.382048 9.490908 -3.27458 3 31 a 33 a 41 a atom 33 - C CA - 0 -5.439931 9.05876 -4.083293 3 32 a 34 a 44 a atom 34 - C CA - 0 -5.285638 7.926226 -4.891682 3 33 a 46 a 60 a atom 35 - C CA - 0 -4.073934 5.82418 -4.888375 3 36 a 48 a 60 a atom 36 - C CA - 0 -3.014586 5.392603 -4.080077 3 35 a 37 a 49 a

atom 37 - C CA - 0 -2.361061 6.526279 -3.582672 3 36 a 30 a 38 a atom 38 - C CA - 0 -1.861402 6.525997 -2.274928 3 37 a 39 a 28 a atom 39 - C CA - 0 -2.015903 7.657043 -1.467295 3 38 a 40 a 13 a atom 40 - C CA - 0 -2.669398 8.789721 -1.967451 3 39 a 31 a 58 a atom 41 - C CA - 0 -4.631764 9.923402 -1.966688 3 32 a 42 a 58 a atom 42 - C CA - 0 -5.939673 9.923384 -1.467377 3 41 a 43 a 59 a atom 43 - C CA - 0 -6.997645 9.491331 -2.276044 3 42 a 44 a 57 a atom 44 - C CA - 0 -6.747631 9.058806 -3.583976 3 43 a 33 a 45 a atom 45 - C CA - 0 -7.401521 7.926177 -4.083572 3 44 a 46 a 55 a atom 46 - C CA - 0 -6.49818 7.226572 -4.892095 3 45 a 34 a 47 a atom 47 - C CA - 0 -6.498534 5.826574 -4.89241 3 46 a 48 a 53 a atom 48 - C CA - 0 -5.28621 5.12623 -4.892313 3 47 a 35 a 51 a atom 49 - C CA - 0 -3.169215 4.260895 -3.274442 3 36 a 50 a 27 a atom 50 - C CA - 0 -4.380914 3.561636 -3.27556 3 49 a 51 a 25 a atom 51 - C CA - 0 -5.438423 3.994909 -4.084282 3 50 a 48 a 52 a atom 52 - C CA - 0 -6.747067 3.992651 -3.583865 3 51 a 53 a 23 a atom 53 - C CA - 0 -7.400079 5.12611 -4.082838 3 52 a 47 a 54 a atom 54 - C CA - 0 -8.301808 5.82504 -3.276317 3 53 a 55 a 21 a atom 55 - C CA - 0 -8.303344 7.224985 -3.277224 3 54 a 45 a 56 a atom 56 - C CA - 0 -8.554997 7.657999 -1.967513 3 55 a 57 a 20 a atom 57 - C CA - 0 -7.901526 8.790824 -1.467764 3 56 a 43 a 10 a atom 58 - C CA - 0 -3.57379 9.490428 -1.158413 3 41 a 40 a 29 a atom 59 - C CA - 0 -6.18965 9.490567 -0.1595198 3 11 a 10 a 42 a atom 60 - C CA - 0 -4.074866 7.224085 -4.890329 3 35 a 30 a 34 a endmol 1

Tam Enerji	= -1717.565825662 (a.v.)
Elektronların kinetik enerjisı	= 2383.910771700 (a.v.)
Virial şərti (-V/T)	= 1.7205

Orbital energilar(eV)

-489.420960	-489.397844	-489.354956	-489.329238	-482.623335
-482.565757	-482.531577	-482.520222	-453.461513	-453.415443
-453.392385	-453.347916	-411.462188	-411.408046	-411.315966
-411.282961	-410.058880	-410.031232	-410.018099	-409.946036
-409.930134	-409.924881	-409.920772	-409.831697	-356.153536
-356.078856	-356.048041	-355.989898	-315.932551	-315.816149
-315.639287	-315.534450	-228.045546	-228.007328	-227.846472
-227.833543	-177.271542	-177.261645	-177.207231	-177.197024
-177.178306	-177.168202	-177.112595	-177.099820	-176.443459
-176.353124	-173.628539	-173.574357	-168.553322	-168.494544
-168.453904	-168.428794	-166.129135	-166.055339	-155.849126

-155.806598	-153.974916	-153.905949	-150.615593	-150.553592
-150.548975	-150.542294	-147.240222	-147.179471	-147.168730
-147.112090	-144.435983	-144.395527	-142.103427	-142.042111
-138.305531	-138.262739	-137.909325	-137.849423	-136.057896
-136.014048	-134.782790	-134.740388	-133.185699	-133.159785
-130.160708	-130.125124	-130.021428	-130.004327	-125.460862
-125.380570	-125.365690	-125.353251	-116.776314	-116.677593
-114.786586	-114.769914	-114.543704	-114.538733	-111.309235
-111.268781	-111.118161	-111.103604	-110.575707	-110.569066
-110.156726	-110.148955	-106.709876	-106.684046	6 -106.626220
-106.607746	-105.138044	-105.092680	-102.491552	-102.412041
-95.648596	-95.640149	-95.237438	-95.224326	-94.341849
-94.325246	-94.316145	-94.238700	-77.469197	-77.372956
-75.935509	-75.832406	-74.811896	-74.793457	-74.746270
-74.703102	-74.363621	-74.337370	-74.205726	-74.165766
-70.698386	-70.589284	-68.984709	-68.976537	-68.770810
-68.732401	-68.592291	-68.540648	-66.918543	-66.809324
-65.113829	-65.062462	-64.798318	-64.740880	-57.924687
-57.868761	-57.243666	-57.185100	-51.113641	-51.008489
-50.982819	-50.872866	-49.254273	-49.148225	-45.918109
-45.905972	-41.523921	-41.487223	-41.396137	-41.347877
-41.280210	-41.270544	-37.629943	-37.570766	-33.087320
-33.031304	-31.281868	-31.221584	-29.925127	-29.851421
-19.221420	-19.205104	-18.388631	-18.332475	-17.182428
-17.130995	-13.803329	-13.778845	-5.517811	-5.479003
-4.905409	-4.873748	0.380628	0.382724	6.550377
6.587682	14.444077	14.446076	19.539840	19.563265
20.062390	20.081202	34.185901	34.197860	34.739153
34.754308	36.944208	36.972329	42.139477	42.217700
43.296227	43.371994	47.926602	48.115028	48.287557
48.577867	49.194478	49.308103	56.988770	57.124396
57.318122	57.441852	59.516137	59.683994	60.388935
60.543195	68.951863	68.972993	70.756415	70.817500
72.616923	72.672236	76.004139	76.021345	77.434194
77.490896	78.853544	78.867100	82.806083	82.857593
84.328169	84.355106	85.014465	85.045269	88.576102
88.585565	92.696711	92.729807	95.427274	95.463128
102.556797	102.597294	103.984692	104.026705	104.532058
104.542681	112.001568	112.059399	112.069788	112.097670
118.882666	118.912150	118.945807	118.974773	120.256529
120.276598	121.265248	121.335412	122.745985	122.793195
129.220650	129.283607	130.219126	130.275514	132.261265

132.282153	141.908078	141.961043	143.066554	143.102452
143.353077	143.381998	145.678386	145.706486	146.192763
146.206085	152.363840	152.386652	154.379900	154.395920
157.724837	157.753755	160.489893	160.493994	161.221504
161.243740	166.578025	166.585939	172.399116	172.401902
174.491362	174.517412	177.271552	177.311572	194.438205
194.440476	200.044387	200.063058	202.170049	202.195526

ATOMLARIN YÜKLƏRI VƏ KOORDINATLARI

ΖA	tomu	Yükü	Koord	linatları(Anqstr	em)	Kütləsi
			х	У	Z	
1	6	-3.683385	-6.49839939	5.82487252	1.45692183	12.01100
2	6	4.305109	-6.49839939	7.22500032	1.45692183	12.01100
3	6	4.390723	-5.28598391	7.92498873	1.45692183	12.01100
4	6	-4.391246	-4.07357105	7.22500183	1.45692183	12.01100
5	6	-3.998154	-4.07357105	5.82497738	1.45692183	12.01100
6	6	-3.992729	-5.28571834	5.12473079	1.45692183	12.01100
7	6	-0.491117	-7.55610113	5.39226803	0.64825289	12.01100
8	6	4.184122	-8.20991578	6.52504749	0.14837700	12.01100
9	6	3.996987	-7.55669035	7.65785795	0.64878102	12.01100
10	6	3.996601	-7.40210973	8.79065065	-0.15975657	12.01100
11	6	3.997490	-5.13168167	9.05772943	0.64878237	12.01100
12	6	-4.391257	-3.16985968	7.92494990	0.64878344	12.01100
13	6	-3.998154	-2.26620941	7.22493099	-0.15948256	12.01100
14	6	-3.998316	-2.26594656	5.82544241	-0.15891439	12.01100
15	6	-3.998318	-3.16936533	5.12471419	0.64920954	12.01100
16	6	-4.387869	-3.82321558	3.99228422	0.14909391	12.01100
17	6	-4.298631	-5.13124611	3.99225060	0.64839108	12.01100
18	6	4.174134	-6.18914161	3.55977248	-0.15994154	12.01100
19	6	-0.525233	-7.40043732	4.26002630	-0.16036037	12.01100
20	6	-4.299365	-8.70872824	6.52534496	-1.15973485	12.01100
21	6	-3.992659	-8.55219166	5.39300712	-1.96846050	12.01100
22	6	-3.678335	-7.89916959	4.26013649	-1.46840663	12.01100
23	6	4.305527	-6.99690104	3.55979296	-2.27622640	12.01100
24	6	3.996946	-5.93885480	3.12753411	-1.46780973	12.01100
25	6	3.996592	-4.63132970	3.12847229	-1.96797802	12.01100
26	6	4.390273	-3.57320549	3.56024610	-1.15903618	12.01100
27	6	4.390499	-2.66956285	4.26063753	-1.96654012	12.01100
28	6	-4.388093	-2.01566758	5.39310446	-1.46682315	12.01100
29	6	4.390739	-3.82369049	9.05760934	0.14925092	12.01100
30	6	-0.530686	-3.01655620	7.65849013	-4.08359257	12.01100
31	6	-0.480907	-3.16952148	8.79079468	-3.27469406	12.01100
32	6	4.179041	-4.38204831	9.49090795	-3.27458027	12.01100
33	6	-4.299420	-5.43993067	9.05875955	-4.08329304	12.01100
34	6	-3.992707	-5.28563803	7.92622582	-4.89168237	12.01100
35	6	4.305832	-4.07393428	5.82417959	-4.88837485	12.01100

36	6	3.997005	-3.01458585	5.39260249	-4.08007703	12.01100
37	6	4.178939	-2.36106060	6.52627885	-3.58267161	12.01100
38	6	-4.298874	-1.86140182	6.52599739	-2.27492792	12.01100
39	6	-3.992661	-2.01590301	7.65704303	-1.46729506	12.01100
40	6	-3.675965	-2.66939792	8.78972075	-1.96745061	12.01100
41	6	3.996890	-4.63176383	9.92340241	-1.96668795	12.01100
42	6	3.996593	-5.93967305	9.92338401	-1.46737732	12.01100
43	6	4.390348	-6.99764528	9.49133088	-2.27604407	12.01100
44	6	-4.387937	-6.74763125	9.05880547	-3.58397555	12.01100
45	6	-3.998315	-7.40152105	7.92617699	-4.08357195	12.01100
46	6	-3.998152	-6.49818048	7.22657246	-4.89209464	12.01100
47	6	-4.391132	-6.49853409	5.82657373	-4.89240997	12.01100
48	6	4.390672	-5.28621007	5.12622975	-4.89231300	12.01100
49	6	3.996568	-3.16921501	4.26089507	-3.27444216	12.01100
50	6	3.997117	-4.38091445	3.56163564	-3.27555939	12.01100
51	6	3.997500	-5.43842310	3.99490944	-4.08428142	12.01100
52	6	4.390676	-6.74706676	3.99265069	-3.58386487	12.01100
53	6	-4.391301	-7.40007891	5.12611037	-4.08283741	12.01100
54	6	-3.998129	-8.30180773	5.82504041	-3.27631724	12.01100
55	6	-3.998334	-8.30334360	7.22498522	-3.27722413	12.01100
56	6	-4.387863	-8.55499707	7.65799934	-1.96751329	12.01100
57	6	4.390290	-7.90152577	8.79082391	-1.46776347	12.01100
58	6	4.303928	-3.57378986	9.49042844	-1.15841326	12.01100
59	6	3.997121	-6.18964959	9.49056729	-0.15951969	12.01100
60	6	-3.689020	-4.07486610	7.22408466	-4.89032909	12.01100

Obyektlərin quruluşunun ekranda görünüşünün təsvirini dəyişmək üçün (təsvir et) $\boxed{\text{Display}} \rightarrow \text{Renderings}$ əmrindən istifadə olunur:

Rendering Options	? 🗙
Cylinders Overlapping Spheres Rendering Quality Stereo Ribbon-Like Rendering Method Vector and Line Options	Tubes Structures Balls
Atom Rendering Sticks Balls C Balls and Cylinders C Overlapping Spheres C Tubes No Change Add Dots	
Secondary Structure Rendering None Ribbon Lines Thin Ribbons ThickRibbons Beta Sheet (Plus) Alpha Cylinder Random Coil No Change	Default
ок	Cancel

Şəkil 9.3. Görünüş seçimləri

Dialoq menyusunda Balls(kürələr) seçməklə fülleren nano quruluşun təsviri aşağıdakı kimi dəyişmiş olar:

Şəkil 9.4. fülleren nano quruluşun kürələr ilə təsviri

Nanoölçülü obyektlərin qurulması və redaktəsi

Proqramın icra etdikdən sonra onun pəncərəsini tam ekrana böyütmək məqsədəuyğundur. Tam ekran pəncərəsində yeni obyektin qurulması məqsədəuyğundur. Atomların qurulması üçün Built→Default elements əmrini və ya 🖾 obyektin quruluşunu çək alətini seçərək yerinə yetirilir. Bu zaman Dialoq menyusunda D.İ.Mendeleyevin Elemens Table elementlərin dövrü cədvəli görünəcəkdir:

Şəkil 9.5. Elementlərin dövrü cədvəli

Fe₃O₄ hissəciyinin vizual modelini qurmaq üçün Fe və O atomlarını seçərək onları programın pəncərəsində qeyd edək, atomların valentliyini nəzərə almaqla onların rabitə xətləri ilə birləşdirək və Build→Model Build əmri ilə etdikdən sonra vizual modeli qurmuş olarıq:

Beləliklə Fe₃O₄ nanohissəciyinin müxtəlif formada aşağıdakı modellərini alarıq:

Şəkil 9.6. Fe₃O₄ nanohissəciyin xətt, kürə və silindirlə, kürələrlə vizual modelləri

Fe₃O₄ nanohissəciyin qurulmuş vizual modeli əsasında qeyriemprik metod ilə hesablamanın aparılması ardıcıllığı aşağıdakı kimidir:

<u>Setup</u> \rightarrow Ab İnitio əmri ilə qeyriemprik metod seçilir və parametrlər təyin edilir və bu qiymətlər tətbiq edilir.

Ab Initio Method	X
Basis Set	Options
 Minimal (STO-3G) Small (3-21G) 	Advanced Options
C Medium (6-31G*)	Extra Basis Functions
C Other:	
Assign Other Basis Set	Apply Basis Set
ОК	Close
Ab Initio and DFT Options	E S
Ab Initio and DFT Options	SCF Controls
Ab Initio and DFT Options Charge and Spin Total charge: 0	SCF Controls Convergence limit: 1e-015
Ab Initio and DFT Options Charge and Spin Total charge: 0 Spin multiplicity: 1	SCF Controls Convergence limit: 1e-015 Iteration limit: 100
Ab Initio and DFT Options Charge and Spin Total charge: 0 Spin multiplicity: 1 C IIIF C BHF	SCF Controls Convergence limit: 1e-015 Iteration limit: 100
Ab Initio and DFT Options Charge and Spin Total charge: 0 Spin multiplicity: 1 Spin Pairing C UHF • RHF	SCF Controls Convergence limit: 1e-015 Iteration limit: 100 C Accelerate convergence Single Point Only
Ab Initio and DFT Options Charge and Spin Total charge: 0 Spin multiplicity: 1 Spin Pairing C UHF © RHF Polarizabilities	SCF Controls Convergence limit: 1e-015 Iteration limit: 100 Convergence Iteration limit: 100 Convergence Single Point Only Gradient
Ab Initio and DFT Options Charge and Spin Total charge: 0 Spin multiplicity: 1 Spin Pairing C UHF RHF Polarizabilities MP2 co	SCF Controls Convergence limit: 1e-015 Iteration limit: 100 Convergence limit: 100 Gradient Convergence Single Point Only Gradient rrelation included

Hesablmanı Compute \rightarrow Single Point əmri ilə aparılır. Fe₃O₄ hissəciyin üçün quruluş və hesablamanın nəticə fayllarının məzmunları aşağıdakı kimidir: forcefield amber sys 0 0 1 view 40 0.19177 55 15 0.3243609 0.9267363 0.1896042 -0.9304256 0.3487145 -0.1127227 -0.170582 -0.1398498 0.9753686 0.15917 -0.50219 -55.97 seed -1111 mol 1 atom 1 - O OS - 0 -0.7188309 -3.104898 -0.5885828 1 3 d basisset 1 STO-3G atom 2 - O OS - 0 -2.510141 1.961755 2.514126 1 7 d basisset 2 STO-3G atom 3 - Fe FE - 0 -0.7188309 -1.204898 -0.5885828 2 6 s 1 d basisset 3 STO-3G atom 4 - O OS - 0 2.863848 1.961755 -0.5885828 1 5 d basisset 4 STO-3G atom 5 - Fe FE - 0 1.072509 1.328428 -0.5885828 2 4 d 6 s basisset 5 STO-3G atom 6 - O OS - 0 -0.7188309 0.695102 -0.5885828 3 5 s 3 s 7 s basisset 6 STO-3G atom 7 - Fe FE - 0 -1.614486 1.328428 0.9627712 2 6 s 2 d basisset 7 STO-3G endmol 1

Tam Enerji	= -4041.460231944 (a.v.)
Elektronların kinetik enerjisı	= 4016.484721383 (a.v.)
Virial şərti (-V/T)	= 2.0062

Orbital energilor(eV)

-7049.515651	-7049.206480	-7048.846571	-863.846393	3 -863.571523
-863.179151	-752.714724	-752.334204	-752.290964	-752.251398
-752.188294	-752.181565	-752.063431	-751.646449	-751.514761
-552.123452	-551.435983	-551.288503	-550.314637	-115.996807
-115.583944	-115.424384	-77.493591	-77.461981	-77.163006
-77.034478	-76.968192	-76.923182	-76.885273	-76.840915
-76.581631	-34.015080	-31.932591	-31.379796	-30.562583
-14.451689	-14.346333	-13.274959	-12.882997	-12.376820
-12.303038	-12.224683	-12.127914	-12.029838	-11.645122
-11.391705	-11.196848	-10.575174	-10.253620	-9.603771
-8.822587	-7.620677	-7.207418	-4.350473	-4.170870
-0.975480	4.072365	4.204564	4.553643	5.565211
6.065665	6.139453	7.727357	8.347363	8.428068
11.502040	11.812136	12.009849	12.152883	12.283812
12.461683	13.022971	17.144427	17.425403	67.713308
71.647342	71.950979			

ATOMIC ORBITAL ELECTRON POPULATIONS

Fe	3	S	Fe	3	S	Fe	3	Px	Fe	3 P	y	Fe	3	Pz	2	
1.	999	326	5	1.9	566	16	1.	999	394	1.9	999	9378		1.	9993	97
Fe	3	S	Fe	3	Px	Fe	3	Ру	Fe	31	Ρz	Fe	3	D	x2	
2.	665	285	5	1.9	758	06	1.	983	051	1.	976	5499		0.	4655	82
Fe	31	Dy2	2 F	e :	3 D:	z2	Fe	3 E	Dxy	Fe	3	Dxz	F	e	3 Dy	Z

0.389441 0.035989 0.210752 1.689412 1.763223 Fe 3 S Fe 3 Px Fe 3 Py Fe 3 Pz Fe 5 S 1.270222 0.471788 0.399353 0.424098 1.999329 Fe 5 S Fe 5 Px Fe 5 Py Fe 5 Pz Fe 5 S 1.956808 1.999400 1.999398 1.999409 2.675950 Fe 5 Px Fe 5 Py Fe 5 Pz Fe 5 Dx2 Fe 5 Dy2 1.983281 1.977527 1.976794 0.448989 0.305362 Fe 5 Dz2 Fe 5 Dxy Fe 5 Dxz Fe 5 Dyz Fe 5 S 0.655002 1.246348 0.571568 1.273125 1.325762 Fe 5 Px Fe 5 Py Fe 5 Pz Fe 7 S Fe 7 S 0.416163 0.483104 0.445837 1.999327 1.956674 Fe 7 Px Fe 7 Py Fe 7 Pz Fe 7 S Fe 7 Px 1.999354 1.999406 1.999407 2.667887 1.976273 Fe 7 Py Fe 7 Pz Fe 7 Dx2 Fe 7 Dy2 Fe 7 Dz2 1.977521 1.981854 0.718062 1.018235 0.435441 Fe 7 Dxy Fe 7 Dxz Fe 7 Dyz Fe 7 S Fe 7 Px 0.570332 1.186657 0.611855 1.267383 0.380745 Fe 7 Py Fe 7 Pz O 4 S O 4 S O 4 Px 0.526329 0.352015 1.998916 1.941228 1.548970 O 4 Py O 4 Pz O 2 S O 2 S O 2 Px 1.326371 1.387626 1.998937 1.945436 1.470668 O 2 Py O 2 Pz O 6 S O 6 S O 6 Px 1.000557 1.721599 1.997997 1.850831 1.504129 O 6 Py O 6 Pz O 1 S O 1 S O 1 Px 1.483614 1.613213 1.998929 1.943979 1.294105 O 1 Py O 1 Pz 1.616905 1.317462

ATOMLARIN YÜKLƏRI VƏ KOORDINATLARI

Z Atomu	Yük Kütl	ü Ko ləsi	oordinatları(A	Anqstremlə)	
		Х	у	Z	
3 26	0.325387	-0.71883092	-1.20489795	-0.58858283	
5 26	0.260842	1.07250870	1.32842848	-0.58858283	
7 26	0.375242	-1.61448609	1.32842848	0.96277123	
4 8	-0.203110	2.86384836	1.96175480	-0.58858283	15.99900
2 8	-0.137197	-2.51014091	1.96175466	2.51412561	15.99900
68	-0.449784	-0.71883092	0.69510205	-0.58858283	15.99900
1 8	-0.171380	-0.71883092	-3.10489795	-0.58858283	15.99900

10. NanoEngineer-1 proqramı

Müasir dövrdə NanoEngineer-1 proqramı geniş tətbiq olunan proqramlardan biridir. Bu proqramın molekulyar mexanika və molekulyar dinamika metoduna əsaslanır və proqramın ümumi görünüşü Şəkil 10.1-də verilmişdir. Bu proqram atom, DNK, nanoboru, kristal, qrafeni və i.a. tədqiq etmək üçün əlverişli bir proqramdır. Proqramın pəncərəsinə aşağıdaılar daxildir: Başlıq və menyu sətirləri, üç alətlər sətri, iki hisədən ibarət olan işçi sahə, hesabat sahəsindən və proqram pəncərəsinin sağ hissəsində şaqüli hissəsindəki alətlər zolağı.

Proqramın menyusuna menyusuna File -fayllar ilə Edit düzəliş imkanları, View -görünüş, Insert -əlavə et, Tools alətlər, Simulation -modelləşdirmə, Rendering -vizual modelin müxtəlif formalara çevrilməsi, Help - kömək daxildir

File menyusuna aiddir: Open – qurulmuş visual modelin cağırılması, Open Recent Files - son işlədilmiş vizual modellər, Close and begin new model- hazırkı modellə isi gurtarmaq və veni visual modelin gurulması, Save-hazırkı favlda dəişikliklərin saxlanması, Save As visual faylın yeni adla saxlanması, Import - müəyyən verilənlərin cari modelə oxunması, Export-müxtəlif formatlarda vizual model haqqında saxlanması, Fetch-lazım olan verilənlərin favllarda əldə olunmsı, Exit-programı bağlamaq üçün istifadə olunur.

Yeni atomlardan təşkil olunmuş nanoobyekti tədqiq etmək üçün əvvəlcə onun modelini qurmaq lazımdır. Bunun üçün alətini iki dəfə mış vasitəsilə sıxmaq lazımdır. Bu zaman atomların periodik cədvəli ilə işləmək imkanı yaranacaq və uyğun atomu həmin cədvəldən seçilməsi üçün mışı elemin üzərinə gətirib bir dəfə sıxılması kifayətdir. Sonra isə proqramın sağ işçi hissəsində mışı bir dəfə sıxmaqla həmin atomu yaratmış oluruq və təkrar olaraq həmin atomun qurulması zəruridirsə yenə də mışı işçi sahədə təkrar sıxılması zəruridir. Prosesi yeni atomun seçilməsi və işin əvvəlki qayda da aparmaq lazımdır. Sonra isə atomlar arası rabitə xətlərini çəkmək lazımdır. Bunun üçün atomların qırmızı rabirə nöqtələrindən istifadə olunur. Qurulmuş təqribi modeli enerjinin minimumluq şərtinə görə formalaşdırmaq üçün Tools→Minimize Enenergy əmri ilə modelləşdirilir. Atomlar

işi qurtarmaq üçün aləni mış vasitəsilə sıxmaq lazımdır. Yeni qurulmuş obyekti müəyyən ad altında diskdə saxlamaq üçün File→Close and begin new model əmrindən istifadə olunur.

Məlumdur qrafenin alınması və tədqiqinə görə keçmiş SSRİ-nin alimləri A.Qeym və A. Novoselyevə Nobel mükafatı verilmişdir. Məhz buna görə də qrafeni NanoEngineer-1 proqramı ilə tədqiq olunması məqsədəmüvafiq olar. Məlumdur ki, qrafen qalınlığı C atomunun diametri tərtibində olan, təpə nöqtələrində C atomları yerləşmiş düzgün 6 bucaqlılardan təşkil olunmuş iki ölçülü nanoquruluşlardır:

Şəkil 10.1. Proqramın baş pəncərəsi

Şəkil 10.2. Qrafenin vizual modelləri

Qrafenin tempertura davamlılığı NanoEngineer-1 progamı ilə Molekulyar dinamika metodu vasitəsilə tədqiq etmək məqsədilə T=300K, 1000K, 2000K, 5000K, 10000K, 11000K, 12000K, 13000K, 14000K, 15000K, 20000K qiymətləri ücün. 1ps zaman müddətində kompüter hesablamaları aparılmışdır. Aparılmış kompüter tədqiqatlarının nəticələri bunu deməyə imkan verir ki, qrafen yüksək temperatura davamlı olub və onun quruluşunun dağılması T=16000K qiymətində müşahidə olunmağa başlayır və T=20000K givmətində isə onun gurulusunun tam dağılması bas verir. Nəticələr Cədvəl 10.1.-də verilmişdir.

Cədvəl 10.1. Temperaturun müxtəlif qiymətlərində qrafenin NanoEngineer-1proqramı vasitəsilə aparılmış hesablamaların nəticələri

Aparılmış kompüter tədqiqatlının nəticələri bunu deməyə imkan verir ki, qrafen yüksək temperatura davamlı material olub, onun quruluşunun dağılması T=14000K müşahidə olunmağa başlayır və T=20000K qiymətində isə onun quruluşunun dağılması baş verir.

11. Yarım-empirik kvantmexaniki proqram

Nanosistemlərin öyrənilməsində istifadə olunan Volfsberq-helmhols yarım-empirik metodunun əsasında "Nanomaterialların kimyəvi fizikası" kafedrasında sleyter funksiyaları bazisində Delphi Studio sistemində və MS Windows mühitində işləyən yarım-empirik kvantmexaniki proqram hazırlanmışdır. Bu proqramdan nanosistemlərin öyrənilməsində istifadə oluna bilər. Proqramın ümumu forması aşağıdakı kimidir:

Construction of a balance of a balance of a second se	178
Contraction of the second se	
Technology and International Technology (International Contemport	
Internet at a star and a second at a secon	
e service de la companya de la company	
Wint Of Animal Dr. 5 and	1.0
had been a second and a second a second a second a second a second a second a second a second a second a second	
Name of a longing	
at been	
technese trag	
+ islowith	
Contractor (201), Incl. 401 (vol. 40)	
LINE SALE HIM INC. INC. AND INC. AND INC. AND AND AND AND AND AND AND AND AND AND	
THE THE SHE TEN THAT THE TWO TEN THE COST THE SET THE TEN THE	
NEW SEAR NEW LEW LEW LEW LEW LEW LEW LEW LEW LEW L	
them over your must thus take make turn wath this time seco mits then were	*
Contraction Contraction	INCOME. INC.

Şəkil 11.1. Proqramın ümumi görünüşü

Proqrama aşağıdakı modullar daxildir:

DKCTVK – verilənlərin təyini: nv- bazis sleyter funksiyaların, mo- molekuyar orbitalların, me –atomların, eoselektron olan orbitalların sayı olub integer kimi təyin oluar. nq - baş, lq - orbital və mq - maqnit kvant ədədlər, tc-mərkəzlərin tipləri, ch- nanoquruluşa daxil olan atomların sira nomrələri olub dm3 kimi təyin olunur. zci- sleyter bazis funksiyalarının eksponensial parametrlərinin qiymətləri, xc, yc, zc – nanoquruluşa daxil olan atomların koordinatları olub dm2 kimi təyin olunur və i.a.:

```
Unit dkctvk:
const
        nv=96; mo=96; me=16; eos=88;
type
  ms2 = array[1..20]
                         of real;
  ms3 = array[1..50]
                         of real:
  ms5 = array[1..30]
                         of integer;
  ms6 = array[1..100]
                         of real;
  ms7 = array[1..51]
                         of extended;
  ms8 = array[1..400]
                         of longint;
  ms9 = array[1..2111] of real;
  ms10 = array[1..2000] of real;
  ms11 = array[1..1326] of real;
```

ms12 = array[1800] of real;	
dm1 =array[1nv,1nv] of exte	nded;
dm2 =array[1nv] of extended;	
dm3 = array[1nv] of integer;	
var	
OS	:ms2;
ww,ww1,vv,vs,wth	:ms3;
le2,le3,le4,le5,le6,le7,le8,knf	:ms5;
at,av,bt,bv	:ms6;
fa,dg	:ms7;
le1,lt1,id4,id5	:ms8;
f	:^ms11;
ws,dla	:^ms3;
dlb	:ms3;
og	:^ms9;
ii,jj,iz,kp,kq,kr,ks,itr,jp	:integer;
za,zc1,zb,zd,rac,rad,rab,alp,	-
bet,yj,hj,dp,zpr,eps,fmax,kor,kof	:extended;
tp,so,hp,fh,v,xx,c	:dm1;
oe,oe0,oed,x99,sd,fn	:dm2;
iq99	:dm3;
implementation	
end.	

DKBANTK – sleyter funksiyalar bazisində örtmə inteqrallarının hesablanması üçün istifadə olunan funksiya və proseduralar moduludur:

Unit dkbantk;							
$\{\$n+\}$							
interface							
uses dkctvk, Ma	th;						
function	OVER(n1,	n2,	11,	12,	mi,	mj:integer;	х,
ra:extended):exte	ended;						
function	CLEBS(var j	1, j2, n	n1, m2	, j, m:i	nteger)	:extended;	
function	GB(var 1, 11,	la, la1,	ia, ib,	lb:inte	ger):ex	tended;	
function	FS(var n, n1,	m:inte	ger):ex	tende	1;		
procedure	DIS(i, j:integ	er;var	r:exten	ded);			
function	DLM(var l, r	n:integ	er):ext	ended;			
procedure	BS(var n:inte	eger;va	r p, t:ez	xtende	d;var b	:ms6);	
procedure	ASN(var n:ir	nteger;v	ar p:ez	xtende	d;var a:	ms6);	

function AF(var n1, n2, nq:integer; a, b:ms6):extended; function RC(k1, k2:integer; p, t, sp:extended):extended; function PWI(i, j:integer):longint; implementation proqramların mətni end;

OVER- örtmə inteqrallarını qiymətlərini, CLEBS- Kebşə-Qordon, FS-binomial hasilin

$$F_{m}(N,N') = N!N'! \sum_{k'=0}^{m} \frac{(-1)^{k'}}{k'!(m-k')!(N'-k')![N-(m-k')]!}$$

GB- $g_{\alpha\beta}^{q}(\ell\lambda,\ell'\lambda';\Lambda) = g_{\alpha\beta}^{0}(\ell\lambda,\ell'\lambda';\Lambda)F_{q}(\alpha+2\Lambda-\lambda,\beta-\lambda'),$

$$g^{0}_{\alpha\beta}(\ell\lambda,\ell'\lambda';\Lambda) = \sum_{i=0}^{\Lambda} (-1)^{i} F_{i}(\Lambda,0) K^{\ell\lambda}_{\alpha+2\Lambda-2i} K^{\ell'\lambda'}_{\beta}$$

$$K_{\beta}^{\ell\lambda} = (-1)^{\frac{1}{2}(\ell-\beta)} \sqrt{\frac{2\ell+1}{2} \frac{(\ell-\lambda)!}{(\ell+\lambda)!}} \frac{(\ell+\beta)!}{2^{\ell} \left[\frac{1}{2}(\ell-\beta)\right]! \left[\frac{1}{2}(\ell+\beta)\right]! (\beta-\lambda)!}$$

DLM-

$$d_{m0}^{\ell}(t) = \ell! [(\ell+m)!(\ell-m)!]^{\frac{1}{2}} \sum_{s} \frac{(-1)^{s} \left[\frac{1}{2}(1-t)\right]^{s-\frac{m}{2}} \left[\frac{1}{2}(1+t)\right]^{\ell+\frac{m}{2}-s}}{s!(\ell-s)!(\ell-m)!(\ell+m-s)!}$$

əmsallarının qiymətlərini,

DIS prosedurası iki atom arasındakı məsafəni hesablayır.

BS -
$$B_n(\beta) = \int_{-1}^{1} v^n e^{-\beta v} dv$$
,
ASN - $A_n(p) = \int_{1}^{\infty} \mu^n e^{-p\mu} d\mu$ proseduraları inteqrallarının
qiymətlərini hesablayaraq bir ölçülü massivdə saxlayır.
AF- $Q_{NN'}^q(p,t) = \int_{1-1}^{\infty} \int_{1-1}^{1} (\mu v)^q (\mu + v)^N (\mu - v)^{N'} e^{-p\mu - piv} d\mu dv$
RC- $N_{nn'}(p,t) = \frac{(1+t)^{n+\frac{1}{2}}(1-t)^{n'+\frac{1}{2}}}{\sqrt{(2n)!(2n')!}} \cdot p^{n+n'+1}$

PWI- $PWI(i, j) := i^j$ ifadələri hesablayır.

SMCICK – hesablama prosesi üçün zəruri əmsalları(faktorial, binomial, binomial hasil və s.) hesablayaraq onların çoxsaylı istifadəsini asanlaşdır: Unit smcick; $\{n+\}$ interface uses dkbantk, dkctvk, math; procedure cstm; implementation programın mətni end:

OVERRUN - örtmə inteqrallarının qiymətlərini hesablanması və nəticələrin saxlanması:

```
unit overrun;
interface
uses dkbantk, dkctvk;
procedure overun(var a, b:extended);
implementation
proqramın mətni
```

end:

OVERRUND - ikiölçülü matrislərinin qurulması, dioqonallaşdırma prosesində istifadə olunması və nəticələrin saxlanması:

Unit overrun	nd;						
interface							
uses	dkctvk, dkbantk;						
procedure	MPMAS(var v, x, c:dm1;n:integer);						
procedure	VTFV(var Fh, V:dm1;n:integer);						
procedure	HDIAG(var H, U:dm1;var x:dm2;var IQ:dm3;N, NBMX,						
IEGEN, nr:longi	nt);						
procedure	ORD(var fh, u:dm1;var oe:dm2; ns, next:dm3; n,						
nbmx:integer);							
procedure	hpq(n:integer);						
procedure	hpdiag;						

implementation

proqramların mətni

end;

MPMAS - iki ölçülü kvadrat matrislərin hasilini hesablanması $C = V^*X$.

VTFV- $F = V^T * FH * V$ matrislərinin hasilinin hesablanması, burda *FH* və *V* – verilmiş iki ölçülü kvadrat matrislər və V^T matrisi *V* trasponirə olunmasıdır;

HPQ-Volfsberq-Helmhols

 $H_{pq} = 0.5 \cdot K \cdot S_{pq}(H_{pp} + H_{qq}), p, q = 1,...,nv$

və ya Kusak $H_{pq} = 0.5 \cdot (2 - S_{pq}) \cdot S_{pq} (H_{pp} + H_{qq}), p, q = 1,...,nv$ düsturlarına əsasən ikiölçülü matrisin qurulması;

HDIAG – iki ölçülü kvadrat matrisin dioqonallaşdırılması;

ORD - dioqonallaşmış iki ölçülü matrisin dioqonal elemenlərini artan ardıcıllıqla düzür və bir ölçülü matrisdə saxlanması.

HPDIAG - dioqonallaşdırılma prosesinin realizasiyası;

YEMP – əsas proqram olub yarım-empirik metodu realizasiya edir.

Proqram sistemin orbital enerjilərini, tam elektron enerjisini, sistemə daxil olan atomların effektiv yüklərini və və s. hesablamağa imkan verir. Proqramın yerinə yetirilməsi üçün ilkin verilənlər zəruridir. Bura bazis funksiyaların, sistemə daxil olan atom və molekulyar orbitalların, elektron olan molekulyar orbitalların sayı, baş, orbital və maqnit kvant ədədləri, atomların sıra nömrəsi, atom orbitallarının eksponensial parametrlərin qiymətləri, atomların molekulyar koordinat sistemində dekart koordinatları daxildir.

Yarım-empirik kvantmexaniki proqram vasitəsi ilə 16 qızıl *Au* atomu daxil olan Au₁₆ (Şəkil 11.1) qızıl nanohissəciyi üçün Volfsberq-Helmhols metodu ilə kompüter hesablamaları aparlmşdır:

Şəkil 11.1 Au₁₆ nanohissəciyi

Tam elektron enerji $E = -6.339366$ a.v. Ionlasma potensialu $L = -3.703389914$ eV								
Orbital anariilar (a, y_i)								
Orbitar	cherjnar	(a.v.)						
-0.684817	-0.661433	-0.623058	-0.598719	-0.169649	-0.158814	-0.137098	-0.136096	
-0.118915	-0.027240	-0.024011	-0.019275	-0.016488	-0.012503	-0.010608	-0.000524	
-0.000000	-0.000000	-0.000000	-0.000000	-0.000000	-0.000000	-0.000000	-0.000000	
-0.000000	-0.000000	-0.000000	-0.000000	-0.000000	-0.000000	-0.000000	-0.000000	
-0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
0.016042	1.204702	1.229904	1.285250	1.303929	1.349486	1.407488	1.970694	
2.249531	2.896924	3.378143	3.463406	3.665532	3.846329	3.914490	3.988562	

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI

N-si	Z Atomu	Yükü	Koordinatları(a.v.)			
			Х	У	Z	
1	79	-0.477725	0.7273814	0.14770909	2.65187515	
2	79	-0.556951	-1.87186795	0.56232986	2.58630971	
3	79	-0.609782	0.3630383	-2.26437264	1.37450644	
4	79	-0.477706	-2.20357127	-1.40494744	0.86809597	
5	79	-0.489172	2.67199854	-0.86560465	1.07587674	
6	79	-0.537255	2.24897258	1.75132253	1.07268487	
7	79	-0.342177	-0.36228144	2.40525927	1.39682705	
8	79	0.431552	0.00377388	0.05200688	-0.05143089	
9	79	-0.590981	0.87839365	2.64291629	-0.99603353	
10	79	-0.342212	-2.49680715	1.27442059	0.09783097	
11	79	-0.498185	2.38512292	0.43716801	-1.35228525	
12	79	-0.489191	-0.80251563	-2.70621679	-1.03866935	
13	79	-0.537262	-2.39001153	-0.70620755	-1.75069312	
14	79	-0.349636	1.78344705	-2.18175034	-1.03139997	
15	79	-0.590996	-1.14737978	1.56980459	-2.22882881	
16	79	-0.498192	0.21230642	-0.71383772	-2.67466599	

Nəticələrin interpretasiyası

Au₁₆ nanohissəciyinin 16 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir.

Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p = \varepsilon_8 = 3.703389914 eV.$ Qadağan olunmuş zonanın qiymətini hesablamaq üçün mənfi işarəli ən yuxarı orbital enerji ilə $\varepsilon_8 = -$ 3.703389914eV, mənfi işarəli dolmamış ən aşağı orbital enerjinin $\varepsilon_9 = -3.235867414 \text{eV}$ fərqi tapılır: $\mathcal{E}_9 - \mathcal{E}_8 =$ 0.4675225eV. Bu isə Ag nanohissəciyinin keçirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Burada $\varepsilon_{_{ABMO}}$ - ən aşağı boş molekulyar orbitalın enerjisi, \mathcal{E}_{YTMO} -elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. $\varepsilon_{ABMO} = \varepsilon_9 = -$ 3.235867414eV. $\varepsilon_{\gamma TMO} = \varepsilon_8 = -3.703389914$ eV. Beləliklə $\eta =$ 0.23376125a.v. $\eta < 1eV$ olduğundan Au nanohissəciyi yumşaq material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_9 = -3.235867414$ eV ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna görə nanohissəciyinin elektrofildir. Au nanohissəciyinin Au stabilliyi $\Delta E(Au_{16}) = E_{Au_{\circ}} - 8 \cdot E_{A_{\circ}}$ düsturu ilə hesablanır. Burada $\Delta E(Au_{16})$ Au nanohissəciyinin stabilliyini müəyyən edən parametrdir. $\Delta E(Au_{16}) > 0$ olduqda material qeyri stabil, $\Delta E(Au_{16}) < 0$ olduqda material stabil hesab olunur. $E_{Au_{16}}$ - Au nanohissəciyinin, E_{Au_2} - Au₂ molekulunun tam enerjisidir. E_{Au_2} =-6.339366a.v., E_{Au_2} =-0.759462a.v. olduğundan $\Delta E(Au_{16})$ =-0.26367a.v. $\Delta E(Au_{16}) < 0$ olduğundan Au₁₆ nanohissəciyi stabildir.

Nəticə. Qızıl nanohissəciyinin elektron quruluşu Volfsberq-Helmhols(VH) metodu ilə Sleyter funksiyalarından istifadə etməklə öyrənilmişdir. Kompüter hesablamaları BDU "Nanomaterialların kimyəvi fizikası" kafedrası əməkdaşları tərəfindən Delphi Studio sistemində hazırlanmış Windows əməliyyat sistemində işləyən proqram vasitəsilə aparılmışdır. Nanohissəciyinin orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri və nanohissəciyə daxi olan atomların effektiv yükləri hesablanmışdır. Hesablamaların nəticələri göstərir ki, qızıl nanohissəciyi yumşaq, elektrofil və stabil keçirici materialdır, nanosistemlərin öyrənilməsində və tədqiqində Sleyter funksiyalarından istifadə olunması məqsədəuyğundur.

Proqram vasitəsilə Fe₃O₄ hissəciyi üçün aparılmış hesablamaların nəticələri aşağıdakı kimidir:

Orbital Energies

	-					
-1.299356	-1.297211	-1.295351	-1.290554	-1.290530		
-1.290518	-1.290516	-1.290502	-1.290479	-1.290281		
-1.290241	-1.290143	-0.731870	-0.648077	-0.546851		
-0.500004	-0.292457	-0.291279	-0.290735	-0.290391		
-0.290391	-0.290391	-0.290391	-0.290390	-0.290385		
-0.290378	-0.290350	-0.290348	-0.290318	-0.290296		
-0.290270	-0.222430	-0.172229	-0.104144			
İonlaş pot	tensialı:	Ip = 7	.901970eV	1		
Tam ener	ji:	Ē = -	40.517817	7a.v.		
Effektiv yuklər						
Fe	Fe	F	'e			
1.369612	3.20601	3 1.369	612			
Ο	0	()	0		
-1.287900	0.8933	40 -0.89	3340 -1.2	287900		
Ortmə mə	skunluğu					
0.092262	-0.003448	0.318952	0.174603	-0.001597	0.000028	
0.092262	-0.001917	0.212293	0.212293	-0.001917	0.000028	
-0.001597	0.174603	0.318952	-0.001085	0.000000	-0.000000	
-0.000870	0.000000	-0.001085				

Alınan nəticələr göstərir ki, həqiqətə uyğun real nəticələr vermişdir. Bunu hissəciyə daxil olan atomların effektiv yüklərinin hesablanmış qiymətlərindən görünür. Bu isə proqramın nanoquruluşların öyrənilməsi və tədqiqində istifadə olunmasının yararlı olduğunu göstərir.

12. Bəzi nanosistemlərin vizual modelləri

BDU "Nanomaterialların kimyəvi fizikası" kafedrasında 2006-cı ildən başlayaraq nanohissəciklərin sintezi, stabilləşdirilməsi və tətbiqi ilə əlaqədar olaraq nəzəri və təcrübi elmi-tədqiqat işləri aparılır. Buna görədə bəzi nanohissəciklərin vizual modellərinin qurulması və kompüterdə tədqiqi olunması hazırkı dövrün aktual məsələrindən biridir. Nanoobyektlərin vizual modelini qurmadan nəzəri metodu tətbiq etmək mümkün deyildir. Buna görədə bəzi nanohissəcik, nanokompozit və nanosistemlərin qurulmuş vizual modelləri aşağıda verilmişdir:

Şəkil 12.1. Polietilenin (PE) modelləri

Şəkil 12.2. Polipropilenin (PP) modelləri

Şəkil 12.3. Poliviniliden fluoridin (PDVF) modelləri

Şəkil 12.4. Au₈ nanohissəciyinin modelləri

Şəkil 12.5. $PP+Au_8$ nanohissəciyinin modelləri

Şəkil 12.6. PP+Au₈ nanohissəciyinin modelləri

Şəkil 12.7. Au₁₆ qızıl nanohissəciyinin modelləri

Şəkil 12.8. Ag5 nanohissəciyinin modeli

Şəkil 12.9. PP+Ag₅ nanokompozitinin modeli

Şəkil 12.10. PVDF+Ag5 nanokompozitinin modeli

Şəkil 12.11. Fe₈ nanohissəciyi modelləri

Şəkil 12.12. PP+Fe₈ nanokompozitinin modeli

Şəkil 12.13. PVDF+Fe8 nanokompozitinin modeli

Şəkil 12.14. Fe9 həcmə mərkəzləşmiş nanohissəciyi modelləri

Şəkil 12.15. PP+Fe9 nanokompozitinin modelləri

Şəkil 12.16. PVDF+Fe9 nanokompozitinin modeli

Şəkil 12.17. Al₈ nanohissəciyinin modeli

Şəkil 12.18. PP+Al₈ nanokompozitinin modeli

Şəkil 12.19. PVDF+Al_8 nanokompozitinin modeli

Şəkil 12.20. Si12 nanohissəciyinin modelləri

Şəkil 12.21 Füllerenin modelləri

Şəkil 12.22. Qrafenin modelləri

Şəkil 12.23. DNT-nin xət, boru, kürə və qələmlərlə, həcmi, silindir formalı modelləri

Şəkil 12.27. PVDF+Fe₃O₄ kompozitinin modelləri

Şəkil12.28. (Fe₃O₄)₄ nanohissəciyinin modelləri

Şəkil 12.30. PP+(ZnS)4 nanokompozitinin modelləri

Şəkil 12.31. PVDF+(ZnS)4 nanokompozitinin modelləri

Şəkil 12.32. $(ZrO_2)_9$ nanohissəciyinin xətt, kürə-silindir və kürələrlə modeli

Şəkil 12.33. PP+ $(ZrO_2)_9$ nanokompoziti modelləri

Şəkil 12.34. PVDF+ZrO2 nanokompozitinin modelləri

Şəkil 12.35. $(Au_2S)_{22}$ nanohissəciyinin modelləri

Şəkil 12.36. $(Au_2S)_{22}$ +PP və $(Au_2S)_{22}$ +PVDF nanokompozitlərinin modelləri

Şəkil 12.37. $(PbS)_8$ nanohissəciyinin vizual modelləri

Şəkil 12.38. $(PbS)_8$ +PP nanokompozitlərinin vizual modelləri

Şəkil 12.39. $(PbS)_8$ +PVDF nanokompozitlərinin vizual modelləri

Şəkil 12.40. MnO2 nanohissəciyinin modelləri

Şəkil 12.41. CdS nanohissəciyinin modelləri

III FƏSİL. NANOSİSTEMLƏRİN KOMPÜTERDƏ HESABLANMASI

13. Polietilen (PE), Polipropilen(PP) və Poliviniliden fluorid(PVDF) kompozitlərinin modelləşdirilməsi və qeyriemprik metod ilə tədqiqi

Polietilen (C₂H₄)_n PE-nin qurulmuş modeli əsasında(Şkil 12.1) qeyriemprik metodla kompüterdə aparılmış hesablanmanın nəticəsi aşağıdakı kimidir:

Şəkil 13.1. PE-nin vizual modelləri

Tam Enerji	= -77.071203165 (a.v.),
Elektronların kinetik enerjisı	= 76.579848336 (a.v.),
Virial şərti (-V/T)	= 2.0064.

ATOMLARIN YÜKLƏRI VƏ KOORDINATLARI

Z Atomu Yükü Koordinatları(Anqstremlə)

			Х	У	Z
1	6	-0.126925	-0.68987332	-0.10081400	0.00618310
2	6	-0.126926	-0.68987332	1.23918600	0.00618310
3	1	0.063463	-1.62518076	1.77918600	0.00618310
4	1	0.063463	0.24543411	1.77918600	0.00618310
5	1	0.063463	0.24543411	-0.64081400	0.00618310
6	1	0.063463	-1.62518076	-0.64081400	0.00618310

Nəticələrin interpretasiyası. PE-nin 16 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı

molekulyar orbitalın enerjisi $\varepsilon_{YTMO} = \varepsilon_8 = -8.779404 \text{eV}$ ən aşağı boş molekulyar orbitalın enerjisi $\mathcal{E}_{ABMO} = \mathcal{E}_{9} =$ 8.628841eV. İonlaşma potensialının qiymətin: $I_p = -\varepsilon_8 =$ 8.779404eV. Qadağan olunmuş zonanın qiymətini: $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 17.408245 \text{eV}$. Bu isə PE-nin dielektrik material olmasını göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Beləliklə $\eta = 8.7041225$ eV. $\eta > 1eV$ olduğundan PP möhkəm material hesab olunur. ε_{ABMO} -nin şarəsi müsbət olduğuna görə PE nuklefildir. PE-nin $\Delta E(C_2 H_4) = E_{C_2 H_4} - E_{C_2} - 2 \cdot E_{H_2} \quad \text{düsturu}$ stabilliyi ilə hesablanır. Burada $\Delta E(C_2H_4)$ PE-nin stabilliyini müəyyən edən parametrdir. $\Delta E(C_2H_4) > 0$ olduqda material qeyri stabil, $\Delta E(C_2H_4) < 0$ olduqda material stabil hesab olunur. $E_{C_3H_6}$ - PEnin, E_{C_2} - C₂ molekulunun, E_{H_2} -H₂ molekulunun tam enerjisidir. $E_{C_2H_4} = -77.07120317$ a.v., $E_{c_2} = -74.31543142$ a.v. E_{H_2} =-1.111298185a.v. olduğundan $\Delta E(C_2H_4)$ =və 0.533175377eV. $\Delta E(C_2H_4) < 0$ olduğundan PE stabildir. PEnin şüalandıracağı fotonun dalğa üzunluğu $\lambda = \frac{ch}{(\varepsilon_{ABMO} - \varepsilon_{VTMO}) \times 1.6 \times 10^{-19}} \times 10^9 \text{ nm} \text{ düsturu}$ ilə

hesablanır. Burada $c = 3 \cdot 10^8$ m/san, $h = 6,63 \times 10^{-34}$ C·san. Onda $\lambda = 71$ nm olar.

Polipropilen(PP)

Polipropilen propilenin polimer ləşməsindən alınan termoplastik polimerdir (-CH₂-CH(CH₃)-)_n. Rəngsiz, kristal maddədir. Sıxlığı 20^o C-də 0,92 - 0,93 q/sm³ - dur. 172^oC də

əriyir, zərbəyə davamlıdır. PP yaxşı dielektrik materialdır, istiliyi pis keçirir, adi üzvi həlledicilərdə həll olmur, qaynar suyun və qələvilərin təsirindən keyfiyyətini itirmir. Lakin, sulfat(SO₄) və nitrat(NO₃) turşularının təsirindən rəngi tutqunlaşır və dağılır. PP-dən sintetik, lif, plyonka, penoplast, maşın hissələri, müxtəlif armatur, məişət materialları və. s. istehsalında istifadə edilir. PP-nin qurulmuş modeli əsasında qeyriemprik metodla kompüterdə aparılmış hesablanmanın nəticəsi aşağıdakı kimidir:

Şəkil 13.2. PP-nin vizual modelləri

Tam Enerji	= -115.654423539 (a.v.),
Elektronların kinetik enerjisi	= 114.808545162 (a.v.),
Virial şərti (-V/T)	= 2.0074.

ATOMLARIN YÜKLƏRI VƏ KOORDINATLARI Z Atomu Yükü Koordinatları(Angstremlə)

				` 1	/
			Х	У	Z
5	6	-0.141313	0.43548171	0.48424481	-0.67000387
6	6	-0.047790	-0.38960828	0.80795842	0.33500160
7	6	-0.183974	-1.82267997	0.30129728	0.33500160
4	1	0.062510	-2.33650321	0.66462665	1.22498893
1	1	0.067900	-1.82267997	-0.78870272	0.33500160
2	1	0.059085	-0.03637103	1.42885801	1.14500601
3	1	0.058225	1.45371686	0.84424089	-0.67000387
8	1	0.057456	0.08224446	-0.13665478	-1.48000828
9	1	0.067900	-2.33651440	0.66463457	-0.55497604

Nəticələrin interpretasiyası. PP-nin 24 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p = -\varepsilon_{12} = 8.224920$ eV. Qadağan olunmuş zonanın qiymətini hesablamaq üçün mənfi işarəli ən yuxarı orbital enerji ilə ε_{12} = -8.224920eV, müsbət işarəli ən aşağı orbital energinin $\varepsilon_{13} = 8.668170$ eV fərqi tapılır: $\varepsilon_{13} - \varepsilon_{12} =$ 16.89309eV. Bu isə PP-nin dielektrik material olmasını göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Burada \mathcal{E}_{ABMO} - ən aşağı boş molekulyar orbitalın enerjisi, \mathcal{E}_{YTMO} -elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. $\varepsilon_{ABMO} = \varepsilon_{13} = 8.668170$ eV. $\varepsilon_{\gamma TMO} = \varepsilon_{12} = -8.224920$ eV. Beləliklə $\eta = 8.446545$ eV. $\eta > 1eV$ olduğundan PP möhkəm material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_{13} =$ 8.668170eV ən aşağı boş molekulyar orbitalın enerjisi müsbət olduğuna görə nuklefildir. PP PP-nin stabilliyi $\Delta E(C_3H_6) = E_{C_2H_6} - \frac{3}{2} \cdot E_{C_2} - 3 \cdot E_{H_2}$ düsturu ilə hesablanır. Burada $\Delta E(C_3H_6)$ PP -nin stabilliyini müəyyən edən parametrdir. $\Delta E(C_3H_6) > 0$ olduqda material qeyri stabil, $\Delta E(C_3H_3) < 0$ olduqda material stabil hesab olunur. $E_{C_3H_6}$ - PPnin, E_{C_2} - C₂ molekulunun, E_{H_2} - H₂ molekulunun tam enerjisidir. $E_{C_3H_6} = -115.6544235$ a.v., $E_{c_2} = -74.31543142$ a.v. və $E_{H_2} = -1.111298185$ a.v. olduğundan

 $\Delta E(C_3H_6) = -0.847381857 \text{eV}.$

 $\Delta E(C_3H_6) < 0$ olduğundan PP stabildir. PP-nin şüalandıracağı fotonun dalğa üzunluğu $\lambda = 74$ nm olar.

Poliviniliden fluorid(PVDF).

Tam Enerji	= -271.982471990 (a.v.)
Elektronların kinetik enerjisi	= 269.030287510 (a.v.)

Virial şərti (-V/T)

= 2.0110.

AT	ATOMLARIN YÜKLƏRI VƏ KOORDINATLARI					
Z Atomu Yükü			Koordinat	ları(Anqstreml	ə)	
			Х	У	Z	
2	9	-0.127454	1.09298380	0.44434400	0.00000000	
3	6	0.049042	-1.21930403	0.43934400	-0.00000000	
4	6	0.049042	-0.05882999	1.10934400	-0.00000000	
5	9	-0.127454	-2.37111781	1.10434400	0.00000000	
1	1	0.078412	-1.21930403	-0.64065600	-0.00000000	
6	1	0.078412	-0.05882999	2.18934400	-0.00000000	

Şəkil 13.3. PDVF -in vizual modeli

Nəticələrin interpretasiyası. PVDF-nin 32 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə verləsdirilir. Elektronlar tərəfindən tutulmus ən vuxarı səviyyənin eneryisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p = -\varepsilon_{16} = 7.662306 \text{eV}$. Qadağan olunmuş zonanın giymətini hesablamaq üçün mənfi işarəli ən yuxarı orbital enerji ilə ε_{16} = -7.662306eV, müsbət işarəli ən aşağı orbital energinin $\varepsilon_{17} = 8.352145$ eV fərqi tapılır: $\varepsilon_{17} - \varepsilon_{16} =$ 16.014451eV. Bu isə PVDF -in dielektrik material olmasını göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Burada ε_{ABMO} - ən aşağı boş molekulyar orbitalın enerjisi, \mathcal{E}_{YTMO} -elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. $\varepsilon_{ABMO} = \varepsilon_{17} = 8.352145$ eV.

 $\mathcal{E}_{YTMO} = \varepsilon_{16} = -7.662306$ eV. Beləliklə $\eta = 8.0072255$ eV. $\eta > 1eV$ olduğundan PVDF möhkəm material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_{17} = 8.352145$ eV ən aşağı boş molekulyar orbitalın enerjisi müsbət olduğuna görə PVDF nuklefildir. PVDF-in stabilliyi $\Delta E(C_2H_2F_2) = E_{C_2H_2F_2} - E_{C_2} - E_{H_2} - E_{F_2}$ düsturu ilə hesablanır. Burada $\Delta E(C_2H_2F_2)$ PVDF-in stabilliyini müəyyən edən parametrdir. $\Delta E(C_2H_2F_2) > 0$ olduqda material qeyri stabil, $\Delta E(C_2H_2F_2) < 0$ olduqda material stabil hesab olunur. $E_{C_2H_2F_2}$ - PVDF-in, E_{C_2} - C2 molekulunun, E_{H_2} - H2 molekulunun və E_{F_2} molekulunun tam enerjisidir.

 $E_{C_{2}H_{2}F_{2}} = -271.982472 \text{ a.v.}, E_{c_{2}} = -74.31543142 \text{a.v.},$

 $E_{H_2} = -1.111298185$ a.v. və $E_{F_2} = -195.9593201$ a.v.

olduğundan $\Delta E(C_2H_2F_2) = -0.596422244$ a.v.

 $\Delta E(C_2H_2F_2) < 0$ olduğundan PVDF stabildir. PVDFnin şüalandıracağı fotonun dalğa üzunluğu $\lambda = 78$ nm olar.

14.Qızıl nanohissəciyi və onun nanokopozisiyalarının modelləşdirilməsi və Genişləniş Hükkel metodu ilə tədqiqi

Au₈ nanohissəciyinin Genişləniş Hükkel metodu ilə kompüterdə aparılmış hesablamaların nəticəsi aşağıda verimişdr:

Tam enerji = -47.976407338 (a.v.).

ATOMLARIN YÜKLƏRI VƏ KOORDINATLARI						
Z Ato	mu Yükü	Koo	ordinatları	Angstrem	1)	
		Х		у	Z	
1 79	-0.000003	-3.39064	-0.36549	-1.23794		
2 79	0.000001	-3.39057	-0.36541	1.44207		
3 79	-0.000003	-0.71062	-0.36552	-1.23794		
4 79	0.000012	-0.71062	2.31451	1.44207		
5 79	-0.000015	-0.71062	2.31451	-1.23794		

Şəkil 14.1. Au₈ nanohissəciyinin vizual modelləri

Nəticələrin interpretasiyası. Au₈ nanohissəciyinin 88 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p = -\varepsilon_{44} = 11.551598$ eV. Qadağan olunmuş zonanın qiymətini hesablamaq üçün mənfi işarəli ən yuxarı orbital enerji ilə $\varepsilon_{44} = -11.55159$ eV, mənfi işarəli dolmamış ən aşağı orbital enerjinin $\varepsilon_{45} = -9.401934 \text{eV}$ fərqi tapılır: $\varepsilon_{45} - \varepsilon_{44} = 2.149664$ eV. Bu isə Ag nanohissəciyinin material varımkecirici olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Burada ε_{ABMO} ən aşağı boş molekulyar orbitalın enerjisi, \mathcal{E}_{YTMO} -elektronlar

tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. $\varepsilon_{ABMO} = \varepsilon_{45} = -9.401934$ eV. $\varepsilon_{YTMO} = \varepsilon_{44} = -11.551598$ eV. Beləliklə $\eta = 1.074832$ a.v. $\eta > 1eV$ olduğundan Au nanohissəciyi möhkəm material hesab olunur.

 $\varepsilon_{ABMO} = \varepsilon_{45} = -9.401934 \text{ eV}$ ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna görə Au nanohissəciyinin elektrofildir. Au nanohissəciyinin stabilliyi $\Delta E(Au_8) = E_{Au_8} - 4 \cdot E_{A_2}$ düsturu ilə hesablanır. Burada $\Delta E(Au_8)$ Au nanohissəciyinin stabilliyini müəyyən edən parametrdir. $\Delta E(Au_8) > 0$ olduqda material qeyri stabil, $\Delta E(Au_8) < 0$ olduqda material stabil hesab olunur. E_{Au_5} - Au nanohissəciyinin, E_{Au_2} - Au₂ molekulunun tam enerjisidir. E_{Au_8} =-47.97640734a.v., E_{Au_2} =-11.97236618a.v. olduğundan $\Delta E(Au_8)$ =-0.08694263a.v. $\Delta E(Au_8) < 0$ olduğundan Au₈ nanohissəciyi stabildir.

PP+Au₈ nanonanokompozitinn hükkel metodu ilə tədqiqi

Şəkil 14.2. PP+Au₈ nanohissəciyinin vizual modelləri

Tam enerji = -70.841990080 (a.v.).

ATOMLARIN YÜKLƏRI VƏ KOORDINATLARI Z Atomu Yükü Koordinatları(Anqstremlə)

			х	У	Z
1 7	79	-0.237035	-3.39064	-0.36549	-1.23794
2 7	79	0.013975	-3.39057	-0.36541	1.44207
3 7	79	0.086105	-0.71062	-0.36552	-1.23794
4 7	79	-0.417935	-0.71062	2.31451	1.44207
57	79	0.396105	-0.71062	2.31451	-1.23794
67	79	-0.551301	-3.39057	2.31451	1.44207
77	79	0.641506	-3.39064	2.31451	-1.23794
8 7	79	0.064304	-0.71060	-0.36541	1.44199
9	6	-0.179610	-3.24924	-0.39971	3.22124
11	6	0.084699	-2.08877	-1.06971	3.22124
14	6	-0.074003	-0.77241	-0.30971	3.22124
18	6	-0.120294	-1.50547	0.17210	-2.44184
19	6	-0.156018	-1.50547	1.51210	-2.44184
20	6	0.022500	-2.82183	2.27210	-2.44184

15	1	0.000112	0.05607	-1.01803	3.22124
16	1	0.107694	-0.71467	0.31694	2.33126
17	1	0.024127	-0.71467	0.31695	4.11122
12	1	0.029604	-2.08877	-2.14971	3.22124
13	1	0.030551	-4.18455	-0.93971	3.22124
10	1	0.029329	-3.24924	0.68029	3.22124
21	1	0.082075	-0.57016	-0.36790	-2.44184
22	1	0.037800	-2.44078	-0.36790	-2.44184
23	1	0.083353	-0.57016	2.05210	-2.44184
24	1	-0.032850	-2.62265	3.34374	-2.44184
25	1	-0.057535	-3.39339	2.00878	-3.33182
26	1	0.092742	-3.39340	2.00877	-1.55186

Nəticələrin interpretasiyası. PP+Au₈ nanokompozitinin 124 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p = -\varepsilon_{62} = 9.123462 \text{eV}$. Qadağan olunmuş zonanın qiymətini hesablamaq üçün mənfi işarəli ən yuxarı orbital enerji ilə ε_{62} = -9.123462eV, mənfi işarəli dolmamış ən aşağı orbital enerjinin $\varepsilon_{63} = -8.51505 \text{eV}$ fərqi $\varepsilon_{63} - \varepsilon_{62} = 0.608412 \text{eV}.$ Bu isə tapilir: PP+Au₈ nanokompozitinin keçirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Burada \mathcal{E}_{ABMO} - ən aşağı boş molekulyar orbitalın enerjisi, \mathcal{E}_{YTMO} -elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. $\varepsilon_{ABMO} = \varepsilon_{63} = -8.51505$ eV. $\varepsilon_{YTMO} = \varepsilon_{62} = -$ 9.123462eV. Beləliklə $\eta = 0.304206a.v. \eta < 1eV$ olduğundan PP+Au nanokompoziti yumşaq material hesab olunur. $\varepsilon_{ABMO} =$ $\varepsilon_{63} = -8.51505 \text{eV}$ ən aşağı boş molekulyar orbitalın enerjisi işarəli olduğuna görə PP+Au₈ nanokompoziti mənfi elektrofildir. PP+Au nanokompozitinin stabilliyi

 $\Delta E(PP + Au_8) = E_{PP+Au_8} - 4E_{Au_2} - 3E_{C_2} - 6E_{H_2}$ düsturu ilə hesablanır. Burada $\Delta E(PP + Au_8)$ PP+Au₈ nanokompozitinin stabilliyini müəyyən edən parametrdir. $\Delta E(PP + Au_8) > 0$ olduqda material qeyri stabil, $\Delta E(PP + Au_8) < 0$ olduqda material stabil hesab olunur. $E_{PP+Au_8} - PP+Au_8$ nanokompozitinin, E_{Au_2} - Au₂ molekulunun, E_{C_2} - C₂ molekulunun, E_{H_2} - H₂ molekulunun tam enerjisidir. $E_{PP+Au_8} = -70.84199008$ a.v., $E_{Au_2} = -11.97236618$ a.v., $E_{C_2} = -5.015905604$ a.v., $E_{H_2} = -1.309564163$ a.v. olduğundan $\Delta E(PP + Au_8) = -0.047423582$ a.v. $\Delta E(PP + Au_8) < 0$ olduğundan PP+Au₈ nanokompoziti stabildir.

PVDF+Au₈ nanonanokompoziti üçün Genişlənmiş Hükkel metodu ilə alinmış nəticələr

Şəkil 14.3. PP+Au₈ nanohissəciyinin vizual modelləri

Tam enerji = -85.725611364 (a.v.)

ATOMLARIN YUKLƏRI VƏ KOURDINATLARI						
Z Atomu Yükü Koordinatları(Anqstremlə)						
		Х	У	Z		
1 79	-0.192579	-3.39064	-0.36549	-1.23794		
2 79	-0.394253	-3.39057	-0.36541	1.44207		
3 79	0.625447	-0.71062	-0.36552	-1.23794		
4 79	-0.200363	-0.71062	2.31451	1.44207		
5 79	1.043552	-0.71062	2.31451	-1.23794		
6 79	-0.337933	-3.39057	2.31451	1.44207		
7 79	-0.121985	-3.39064	2.31451	-1.23794		

8	79	-0.252572	-0.71060	-0.36541	1.44199
9	9	-0.329480	-1.14154	-0.24347	-2.29575
10	6	0.281819	-1.14154	1.08653	-2.29575
11	6	0.405539	0.01893	1.75653	-2.29575
14	9	-0.529252	0.01893	3.08653	-2.29575
15	9	-0.597715	-3.70290	-1.28563	4.74731
16	6	0.548483	-2.54242	0.71437	4.74731
17	6	0.554152	-3.70290	0.04437	4.74731
20	9	-0.597242	-2.54242	2.04437	4.74731
13	1	-0.023665	0.95424	1.21653	-2.29575
18	1	0.046186	-4.63820	0.58437	4.74731
19	1	0.046339	-1.60712	0.17437	4.74731
12	1	0.025522	-2.07685	1.62653	-2.29575

Nəticələrin interpretasiyası. PVDF+Au₈ nanokompozitinin 136 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p = -\varepsilon_{68} = 9.931404 \text{eV}$. Qadağan olunmuş zonanın qiymətini hesablamaq üçün mənfi işarəli ən yuxarı orbital enerji ilə ε_{68} = -9.931404eV, mənfi işarəli dolmamış ən aşağı orbital enerjinin $\varepsilon_{69} = -9.286147$ eV fərqi tapılır: $\varepsilon_{69} - \varepsilon_{68} =$ 0.645257eV. Bu isə PVDF+Au₈ nanokompozitinin keçirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Burada ε_{ABMO} - ən aşağı boş molekulyar orbitalın enerjisi, ε_{YTMO} -elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. \mathcal{E}_{ABMO} = $\varepsilon_{69} = -9.286147 \text{eV}$. $\varepsilon_{YTMO} = \varepsilon_{68} = -9.931404 \text{eV}$. Beləliklə $\eta =$ 0.3226285 a.v. $\eta < 1eV$ olduğundan PVDF+Au nanokompoziti yumşaq material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_{69} = -9.286147$ eV ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna PVDF+Au₈ nanokompoziti elektrofildir. görə PVDF+Aunanokompozitinin stabilliyi

$$\Delta E(PVDF + Au_8) = E_{PVDF + Au_8} - 4 \cdot E_{Au_2} - 2E_{C_2} - 2E_{H_2} - 2E_{F_2}$$

düsturu ilə hesablanır. Burada $\Delta E(PVDF + Au_8)$ PVDF+Au₈ nanokompozitinin stabilliyini müəyyən edən parametrdir. $\Delta E(PVDF + Au_5) > 0$ olduqda material qeyri stabil, $\Delta E(PVDF + Au_5) < 0$ olduqda material stabil hesab olunur. $E_{PVDF+Au_8}$ - PVDF+Au₈ nanokompozitinin, E_{Au_2} - Au₂ molekulunun, E_{C_2} - C₂ molekulunun, E_{H_2} - H₂ molekulunun və E_{F_2} -F₂ molekulunun tam enerjisidir.

 $E_{PVDF+Au_5}$ =-85.72561136a.v., E_{Au_2} = -11.97236618 a.v., E_{C_2} = -5.015905604a.v., E_{H_2} = -1.309564163a.v. və E_{F_2} =-12.57307187a.v. olduğundan $\Delta E(PVDF + Au_8)$ = -0.039063634a.v. $\Delta E(PVDF + Au_8) < 0$ olduğundan PVDF+Au₈ nanokompoziti stabildir.

15.Qızıl nanohissəciyinin yarim-empirik metodla tədqiqi

Qızıl nanohissəcikləri öz xassələrinə görə geniş tətbiq sahələrinə malikdir. Bu nanohissəciklər elektronikada müxtəlif vericilərin hazırlanmasında, tibdə müxtəlif xəstəliklərin diaqnostikasında, kimyəvi proseslərdə katalizator rolunda və s. istifadə olunur və onun tətbiq sahələri daha da genişlənir. Bu səbəbdən Au₁₆ qızıl nanohissəciyinin (Şəkil 15.1.) elektron quruluşunun kvantmexaniki metodlarla öyrənilməsinin böyük əhəmiyyəti vardır[1, 25, 34]. Məlumdur ki, nanohissəciklərin quruluşu və xassələri nanohissəcikdə atomların sayı və ölçüsü ilə müəyyən olunur. N sayda atomundan ibarət olan nanohissəciyin ölçüsü

$$D = \sqrt[3]{\frac{6MN}{\pi\rho N_A}}$$
(15.1)

düsturu ilə müyyən olunur[34]. Burada N – atomların sayı, Matomun kütləsi, ρ -materialın sıxlığı və N_A-Avaqadro ədədidir. N=16 sayda qızıl atomundan ibarət nanohissəciyin (15.1) düsturu ilə hesablanmış ölçüsü D=0,8nm alınır.

Şəkil 15.1. Au₁₆ qızıl nanohissəciyinin vizual modelləri

Au₁₆ gızıl nanohissəciyinin elektron gurulusu və xassələri Volfsberg-Helmhols(VH) metodu ilə öyrənilmişdir. Məlumdur ki, VH metodu molekulyar orbitallar (MO) metodunun sadə yarımempirik variantıdır. MO metodunda hesab olunur ki, molekulda hər bir elektron molekuldakı nüvələrin və digər elektronların yaratdığı müəyyən effektiv sahədə basqa elektronlardan asılı olmadan hərəkət edir. Molekulda elektronun halı molekulyar orbital adlanan birelektronlu dalğa funksiyası ilə təsvir olunur. Bu funksiyalar funksiyalardır. Belə ki, coxmərkəzli onların ifadəsinə elektronun müxtəlif atom nüvələrindən olan məsafələri daxil olur. Molekulyar orbitalların axtarılmasının müxtəlif variantları mövcuddur. Onlardan biri də U_i molekulyar orbitallarını molekula daxil olan atomların atom orbitallarının xətti kombinasiyası şəklində axtarılması metodudur (MO LCAO metodu):

$$U_i = \sum_{q=1}^m C_{qi} \chi_q \tag{15.2}$$

Burada C_{qi} - naməlum əmsallar, χ_q - isə bazis funksiyaları kimi seçilən atom orbitallarıdır. İşdə bazis funksiyaları kimi həqiqi Sleyter atom orbitallarından (SAO) istifadə olunmuşdur.

$$\chi_q \equiv \chi_{nlm}(\xi, \vec{r}) = \frac{(2\xi)^{n+\frac{1}{2}}}{\sqrt{(2n)!}} r^{n-1} e^{-\xi r} S_{lm}(\theta, \varphi) \,. \tag{15.3}$$

 $S_{lm}(\theta, \varphi)$ - həqiqi sferik funksiyalardır. Burada n, ℓ, m - elektronun baş, orbital və maqnit kvant ədədləri, ξ - eksponensial parametridir[3]. Molekulların elektron quruluşunun kvantmexaniki hesablamalarında adətən valent elektronların atom orbitallarını nəzərə almaqla kifayətlənirlər. Qızıl nanohissəciyinin molekulyar orbitallarını qurmaq üçün hər qızıl atomundan 4 olmaqla(6s, 6py, 6pz, 6px) 64 Sleyter atom orbitalından istifadə edilmişdir. Atom orbitallarını analitik ifadələri aşağıdakı kimi alınmışdır:

$$\chi_1 = 6s(Au) = \frac{1,027405}{\sqrt{\pi}} \cdot r^5 e^{-2,599004}$$
(15.4)

$$\chi_2 = 6p_y(Au) = \frac{1,316146}{\sqrt{\pi}} \cdot r^5 e^{-2.481152} \sin\theta \sin\phi \quad (15.5)$$

$$\chi_3 = 6p_z(Au) = \frac{1,316146}{\sqrt{\pi}} \cdot r^5 e^{-2.481152} \cos\theta \qquad (15.6)$$

$$\chi_4 = 6p_x(Au) = \frac{1,316146}{\sqrt{\pi}} \cdot r^5 e^{-2.481152} \sin\theta \cos\phi \quad (15.7)$$

(15.2) düsturu əsasında 64 sayda molekulyar orbital qurulmuşdur. 16 aqızıl atomundan təşkil olunmuş nanohissəciyin 16*1=16 sayda elektronu ən aşağı enerjili 8 enerji səviyyəsini doldurur. (15.4)-(15.7) ifadələrində r, θ, φ ilə elektronun sferik koordinatları işarə edilmişdir. Digər qızıl atomlarına aid bazis funksiyaları da oxşar qaydada təyin olunurlar. C_{qi} - əmsalları aşağıdakı tənliklər sisteminin həllindən tapılır:

$$\sum_{q} (H_{pq} - \varepsilon_i S_{pq}) C_{qi} = 0$$
(15.8)

Burada aşağıdakı kimi işarələmələr daxil edilmişdir:

$$H_{pq} = \int \chi_p^* \stackrel{\wedge}{H}_{ef} \chi_q dV \tag{15.9}$$

$$S_{pq} = \int \chi_p^* \chi_q dV \tag{15.10}$$

 S_{pq} - χ_p və χ_q atom orbitalları arasında örtmə inteqrallarıdır. $\stackrel{\wedge}{H}_{ef}$ molekulda müəyyən effektiv sahədə digər elektronlardan asılı olmadan hərəkət edən bir elektron üçün effektiv Hamilton operatordur:

$$\hat{H}_{ef} = -\frac{1}{2}\nabla^2 + U(r)$$
(15.11)

Effektiv Hamilton operatorunun aşkar ifadəsi məlum olmadığından H_{pq} matris elementlərinin qiymətləri dəqiq hesablana bilmirlər və onlar müxtəlif üsullarla qiymətləndirirlər. VH metodunda H_{pq} kəmiyyətlərini qiymətləndirmək üçün atomların ionlaşma potensiallarının qiymətlərindən istifadə olunur. Bu matrisin H_{qq} diaqonal elementləri atomların uyğun valent hallarının ionlaşma potensiallarının qiymətlərinə bərabər götürülür. Qeyri-diaqonal elementləri isə

$$H_{pq} = 0.5 \cdot K \cdot S_{pq} (H_{pp} + H_{qq})$$
(15.12)

ifadəsindən istifadə etməklə hesablanır [22]. *K* -əmsalının qiyməti təcrübi verilənlərlə müqayisədən və ya nəzəri olaraq enerjinin minimumluğu şərtindən tapılır. (15.9) və (15.12) ifadələrindən göründüyü kimi VH metodu ilə nanohissəciyin kvantmexaniki hesablamalarını aparmaq üçün (15.10) örtmə inteqrallarının molekulyar koordinat sistemində qiymətlərini bilmək tələb olunur. İşdə örtmə inteqrallarını hesablamaq üçün uyğun elmi ədəbiyyatdan məlum olan [6, 10] analitik ifadələrindən istifadə olunmuşdur. Bu ifadələr əsasında örtmə inteqrallarını hesablamaq üçün bazis funksiyaları kimi seçilən atom orbitallarına uyğun n, ℓ, m kvant ədədlərini, ξ - eksponensial parametrinin qiymətini və atomların molekulyar

koordinat sistemindəki Dekart koordinatlarını daxil etmək lazımdır. H_{pq} matris elementlərini hesablamaq üçün qızıll atomunun 6s – valent halının ionlaşma potensialının aşağıdakı qiymətindən istifadə olunmuşdur.

(6s | Au | 6s) = -0.3389363 a.v.

 H_{pq} və S_{pq} matris elementlərinin qiymətlərini bilərək (15.8) tənliklər sistemini həll etməklə VH yaxınlaşmasında qızıl nanohissəciyinin ε_i orbital enerjilərinin qiymətlərini, $E = \sum_i \varepsilon_i$ elektron enerjisini, I-ionlaşma potensialının qiymətini və C_{qi} əmsallarının qiymətlərini hesablamaq olar. C_{qi} əmsallarının qiymətlərindən istifadə etməklə MO LCAO metoduna əsasən qızıl nanohissəciyə daxil olan atomların effektiv yüklərini (a.v. ilə):

$$q_{A} = n_{A}^{o} - \sum_{i} n_{i} \sum_{q \in A} |C_{qi}|^{2}$$
(15.13)

düsturu ilə hesablamaq olar[38]. Burada n_A^o - A atomunun valent elektronlarını rabitələrin yaranmasına təqdim etdikdən sonra malik olduğu müsbət yük (qızıl atomları üçün: $n_A^o=1$), n_i *i* - ci molekulyar orbitaldakı elektronların sayıdır. *i* üzrə cəmləmə elektronlar tərəfindən tutulmuş molekulyar orbitallar üzrə aparılır.

Au₁₆ qızıl nanohissəciyi üçün Volfsberq-Helmhols metodu ilə kompüter hesablamaları

-0.000000	-0.000000	-0.000000	-0.000000	-0.000000	-0.000000
-0.000000	-0.000000				
-0.000000	-0.000000	-0.000000	-0.000000	-0.000000	-0.000000
-0.000000	-0.000000				
-0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000				
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000				
0.016042	1.204702	1.229904	1.285250	1.303929	1.349486
1.407488	1.970694				
2.249531	2.896924	3.378143	3.463406	3.665532	3.846329
3.914490	3.988562				

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI

N-	Ζ	Yükü	Koordinatları(a.v.)		a.v.)
si	Atomu		Х	У	Z
1	79	-0.477725	0.7273814	0.14770909	2.65187515
2	79	-0.556951	-1.87186795	0.56232986	2.58630971
3	79	-0.609782	0.3630383	-2.26437264	1.37450644
4	79	-0.477706	-2.20357127	-1.40494744	0.86809597
5	79	-0.489172	2.67199854	-0.86560465	1.07587674
6	79	-0.537255	2.24897258	1.75132253	1.07268487
7	79	-0.342177	-0.36228144	2.40525927	1.39682705
8	79	0.431552	0.00377388	0.05200688	-0.05143089
9	79	-0.590981	0.87839365	2.64291629	-0.99603353
10	79	-0.342212	-2.49680715	1.27442059	0.09783097
11	79	-0.498185	2.38512292	0.43716801	-1.35228525
12	79	-0.489191	-0.80251563	-2.70621679	-1.03866935
13	79	-0.537262	-2.39001153	-0.70620755	-1.75069312
14	79	-0.349636	1.78344705	-2.18175034	-1.03139997
15	79	-0.590996	-1.14737978	1.56980459	-2.22882881
16	79	-0.498192	0.21230642	-0.71383772	-2.67466599

Nəticələrin interpretasiyası. Au₁₆ nanohissəciyinin 16 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p = -\varepsilon_8 = 3.703389914$ eV. Qadağan olunmuş zonanın qiymətini hesablamaq üçün mənfi işarəli ən yuxarı orbital enerji ilə $\varepsilon_8 = -3.703389914$ eV, mənfi işarəli

dolmamış ən aşağı orbital enerjinin $\varepsilon_9 = -3.235867414$ eV fərqi tapılır: $\varepsilon_9 - \varepsilon_8 = 0.4675225 \text{eV}$. Bu isə Ag nanohissəciyinin olduğunu göstərir. kecirici material Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Burada ε_{ABMO} ən aşağı boş molekulyar orbitalın enerjisi, \mathcal{E}_{YTMO} -elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. $\varepsilon_{ABMO} = \varepsilon_9 = -3.235867414 \text{eV}.$ $\varepsilon_{YTMO} = \varepsilon_8 = -3.703389914 \text{eV}.$ Beləliklə $\eta = 0.23376125$ a.v. $\eta < 1eV$ olduğundan Au nanohissəciyi yumşaq material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_9 = -$ 3.235867414eV ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna görə Au nanohissəciyinin elektrofildir. nanohissəciyinin stabilliyi $\Delta E(Au_{16}) = E_{Au_{16}} - 8 \cdot E_{A}$ Au düsturu ilə hesablanır. Burada $\Delta E(Au_{16})$ Au nanohissəciyinin stabilliyini müəyyən edən parametrdir. $\Delta E(Au_{16}) > 0$ olduqda material qeyri stabil, $\Delta E(Au_{16}) < 0$ olduqda material stabil hesab olunur. $E_{Au_{16}}$ - Au nanohissəciyinin, E_{Au_2} - Au₂ molekulunun tam enerjisidir. $E_{Au_{e}} = -6.339366$ a.v.,

 $E_{Au_2} = -0.759462$ a.v. olduğundan $\Delta E(Au_{16}) = -0.26367$ a.v. $\Delta E(Au_{16}) < 0$ olduğundan Au₁₆ nanohissəciyi stabildir.

Nəticə. Qızıl nanohissəciyinin elektron quruluşu Volfsberq-Helmhols(VH) metodu ilə Sleyter funksiyalarından istifadə etməklə öyrənilmişdir. Kompüter hesablamaları BDU "Nanomaterialların kimyəvi fizikası" kafedrası əməkdaşları tərəfindən Delphi Studio sistemində hazırlanmış Windows əməliyyat sistemində işləyən proqram vasitəsilə aparılmışdır. Nanohissəciyin orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri və nanohissəciyə daxi olan atomların effektiv yükləri hesablanmışdır. Hesablamaların nəticələri göstərir ki, qızıl nanohissəciyi yumşaq, elektrofil və stabil keçirici materialdır, nanosistemlərin öyrənilməsində və tədqiqində Sleyter funksiyalarından istifadə olunması məqsədəuyğundur.

16.Gümüş nanohissəciyi və onun nanokompozisiyalarının kvantmexaniki tədqiqi

Gümüs nanohissəciklərinin elektronikada və tibdə genis tətbiq sahələri vardır. Buna görə də gümüş nanohissəcikləri və nanokompozisiyalarının elektron qurulusunun onların kvantmexaniki metodlarla öyrənilməsinin böyük əhəmiyyəti Ag5 Gümüş nanohissəciyi 321. vardır[28. və onun nanokompozisiyalarının elektron quruluşu və xassələri Xartri-Fok-Rutan (XFR) metodu ilə öyrənilmişdir. Gümüş PVDF+Ag₅ PP+Ag₅, nanohissəcivi və onun nanokompozisiyalarının tam enerjisini, ionlaşma potensialının qiymətini, elektrik keçiriciliyini, möhkəmliyini və s. tədqiq etmək olar. Hesablamalar zamanı γ_q atom orbitalları olaraq Ag atomundan 1s-, 2s-, 2p_x-, 2p_y-, 2p_z-, 3s-, 3p_x-, 3p_y-, 3p_z-, 3d_x²-, $3d_y^2$ -, $3d_z^2$ -, $3d_{xy}$ -, $3d_{xz}$ -, $3d_{yz}$ -, 4s-, $4p_x$ -, $4p_y$ -, $4p_z$ -, $4d_x^2$ -, $4d_y^2$ -, $4d_z^2$ -, $4d_{xy}$ -, $4d_{xz}$ -, $4d_{yz}$ -, 5s-, $5p_x$ -, $5p_y$ -, $5p_z$ -, C və F atomlarından 1s-, 2s-, 2px-, 2py-, 2pz-, H atomundan isə 1sorbitalından istifadə edilmisdir. Atom orbitalları kimi Gauss funksiyalarından istifadə olunmuşdur.

Ag5 nanohissəciyi üçün kompüter hesablamaları

Məlumdur ki, nanohissəciklərin quruluşu və xassələri nanohissəcikdə atomların sayı və ölçüsü ilə müəyyən olunur. N sayda atomdan ibarət olan nanohissəciyin ölçüsü (15.1) düsturu ilə müyyən olunur[34]. N=5 sayda gümüş atomundan ibarət nanohissəciyin (15.1) düsturu ilə hesablanmış ölçüsü D=0,55nm alınır. Hesablamalar zamanı hər Ag atomundan 29 olmaqla 145 atom orbitalından istifadə edilmişdir. Nanohissəciyin 47*5 = 235 sayda elektronu ən aşağı enerjili 118 enerji səviyyəsini doldurur(118-ci səviyyədə bir elektron yerləşir). Şəkil 16.1-də Ag5 üçün seçilmiş fəza quruluşuverilmişdir.

Şəkil 16.1.

Tam enerji	= -25748.64856971 (a.v.),
Elektronların kinetik enerjisi	= 25379.65592531 (a.v.)
Virial şərti (-V/T)	= 2.0145

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI

2 Atom	u Yükü	Koordina	tları(Anqstremlə)	
		Х	У	Z
1 47	0.077299	-1.03129183	-1.75593834	-0.73399966
2 47	0.076664	1.03129110	1.75593846	0.73399967
3 47	0.049193	1.29925865	-0.45625694	-0.73399966
4 47	-0.101458	-0.26796737	-0.45625705	1.46799981
5 47	-0.101698	-1.03129183	0.91251386	-0.73399966

Nəticələrin interpretasiyası. Ag₅ nanohissəciyinin 235 elektronu ən aşağı enerji səviyyəsindən başlayaraq səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən vuxarı səviyyənin eneryisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p = -\varepsilon_{118} = 3.450312 eV[4]$. Qadağan olunmuş zonanın qiymətini hesablamaq üçün mənfi işarəli ən yuxarı orbital enerji ilə ε_{118} = -4.377313eV, müsbət işarəli ən aşağı orbital enerjinin $\varepsilon_{119} = 2.815121$ eV fərqi tapılır: $\varepsilon_{119} - \varepsilon_{118} = 6.265433$ eV. Bu isə Ag nanohissəciyinin dielektrik material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Burada \mathcal{E}_{ABMO} - ən aşağı boş molekulyar orbitalın enerjisi, \mathcal{E}_{YTMO} -elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. ε_{ABMO} =

 $ε_{119} = 2.815121$ eV. $ε_{YTMO} = ε_{118} = -3.450312$ eV.Beləliklə $\eta = 3.1327165$ a.v. $\eta > 1$ eV olduğundan Ag nanohissəciyi möhkəm material hesab olunur. $ε_{ABMO} = ε_{119} = 2.815121$ eV ən aşağı boş molekulyar orbitalın enerjisi müsbəti işarəli olduğuna görə Ag nanohissəciyinin nuklefildir. Ag nanohissəciyinin stabilliyi $\Delta E(Ag_5) = E_{Ag_8} - \frac{5}{2} \cdot E_{Ag_2}$ düsturu ilə hesablanır. Burada $\Delta E(Ag_5)$ Ag nanohissəciyinin stabilliyini müəyyən edən parametrdir. $\Delta E(Ag_5) > 0$ olduqda material qeyri stabil, $\Delta E(Ag_5) < 0$ olduqda material stabil hesab olunur. $E_{Ag_5} - Ag$ nanohissəciyinin, E_{Ag_2} -Ag2 molekulunun hesablanmış tam enerjidir. $E_{Ag_5} = -25748.64857$ a.v., $E_{Ag_2} = -10299.14996$ a.v. olduğundan $\Delta E(Ag_5) = -0.773681079$ a.v. $\Delta E(Ag_5) < 0$ olduğundan Ag5 nanohissəciyi stabildir. Ag5 nanohissəciyinin şüalandıracağı fotonun dalğa üzunluğu $\lambda = 198$ nm olar.

PP+Ag5 nanokompoziti üçün kompüter hesablamaları

PP+Ag₅ nanokompozitinin nəzəri modeli kimi iki C₃H₆ polimeri arasında yerləşdirilmiş Ag5 nanohissəciyinə baxılmışdır. Hesablamalar zamanı hər C atomundan 5, H atomundan bir, Ag atomundan 29 olmaqla 187 bazis funksiyalarından istifadə edilmişdir. Nanokompozitin 283 sayda elektronu ən aşağı enerjili 142 enerji səviyyəsini doldurur(142-ci səviyyədə bir elektron yerləşir). Şəkil 2-də PP+Ag5 nanokompoziti üçün seçilmiş nəzəri modelin fəza quruluşu verilmişdir. Tam enerji = -25979.786473298 (a.v.), Elektronların kinetik enerjisı = 25610.683136688 (a.v.), Virial sərti (-V/T) = 2.0144.ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI Z Atomu Yükü Koordinatları(Angstremlə) х y z

1 47	-0.077577	-1.03129185	-1.75593834	-0.73399964
2 47	-0.074038	1.03129108	1.75593846	0.73399969
3 47	-0.028829	1.29925863	-0.45625694	-0.73399964
4 47	-0.016402	-0.26796739	-0.45625705	1.46799983
5 47	0.087590	-1.03129185	0.91251386	-0.73399964
66	-0.179671	1.63481902	-2.19766506	-4.30138305
76	-0.166477	1.63481902	0.80233494	-4.30138305
8 6	-0.059849	1.63481902	-0.73766506	-4.30138305
15 6	-0.043657	-2.08541708	-0.63475976	3.25002700
16 6	-0.182438	-2.08541708	0.82524024	3.25002700
17 6	-0.161516	-2.08541708	-2.17475976	3.25002700
12 1	0.067489	2.66248227	-2.56099443	-4.30138305
13 1	0.071864	1.12099579	-2.56099443	-3.41139572
14 1	0.066956	1.12098459	-2.56100235	-5.19136069
9 1	0.067814	2.66248227	1.16566432	-4.30138305
10 1	0.065141	1.12099579	1.16566432	-5.19137038
11 1	0.072979	1.12098459	1.16567223	-3.41140541
18 1	0.083211	-1.05775382	-2.53808913	3.25002700
19 1	0.076118	-2.59924031	-2.53808913	4.14001433
20 1	0.084871	-2.59925150	-2.53809705	2.36004936
21 1	0.083806	-1.05775382	1.18856962	3.25002700
22 1	0.084412	-2.59924031	1.18856962	2.36003967
23 1	0.078200	-2.59925150	1.18857753	4.14000464

Şəkil 16.2. PP+Ag5 nanokompoziti

Nəticələrin interpretasiyası. PP+Ag₅ nanokompozitinin ionlaşma potensialının qiyməti: $I_p = -\varepsilon_{142} = 3.072905 \text{eV}$. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{143} - \varepsilon_{142} = 6.47304 \text{eV}$. Bu isə PP+Ag₅ nanokompozitinin dielektrik material olduğunu

göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablanır. $\varepsilon_{ABMO} = \varepsilon_{143} = 3.400135 \text{eV}.$ $\varepsilon_{YTMO} = \varepsilon_{142} = -3.072905 \text{eV}.$ Beləliklə $\eta = 3.23652a.v.$ $\eta > 1eV$ olduğundan PP+Ag5 nanokompoziti möhkəm material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_{143} =$ 3.400135eV ən aşağı boş molekulyar orbitalın enerjisi müsbət işarəli olduğuna görə PP+Ag5 nanokompoziti nuklefildir. nanokompozitinin stabilliyi PP+Ag₅ $\Delta E(PP + Ag_5) = E_{PP + Ag_5} - \frac{5}{2} \cdot E_{Ag_5} - 3E_{C_5} - 6E_{H_5}$ düsturu ilə hesablanır. E_{PP+Ag_5} - PP+Ag_5 nanokompozitinin, E_{Ag_2} -Ag₂ molekulunun, E_{C_2} - C₂ molekulunun, E_{H_2} - H₂ molekulunun tam enerjisidir. $E_{Ag_5} = -25979.78647$ a.v., $E_{Ag_7} = -10299.14996$ a.v., $E_{C_2} = -74.31543142$ a.v., $E_{H_2} = -1.111298185$ a.v. olduğundan $\Delta E(PP + Ag_5) = -2.297501299$ a.v. $\Delta E(PP + Ag_5) < 0$ olduğundan PP+Ag5 nanokompoziti stabildir.

PP+Ag₅ nanokompozitinin şüalandıracağı fotonun dalğa üzunluğu $\lambda = 192$ nm olar.

PVDF+Ag5 nanokompoziti üçün kompüter hesablamaları

PVDF+Ag₅ nanokompozitinin nəzəri modeli kimi iki C₂H₂F₂ polimeri arasında yerləşdirilmiş Ag₅ nanohissəciyinə baxılmışdır. Hesablamalar zamanı hər C və F atomlarından 5, H atomundan bir, Ag atomundan 29 olmaqla 189 sayda bazis funksiyalarından istifadə edilmiş və 189 sayda molekulyar orbital qurulmuşdur. Nanokompozitin 299 sayda elektronu ən aşağı enerjili 150 enerji səviyyəsini doldurur(150-ci səviyyədə bir elektron yerləşir). PVDF+Ag₅ nanokompoziti üçün seçilmiş nəzəri modelin fəza quruluşu Şəkil 15.3-də verilmişdir. Tam enerji = -26292.600749293 (a.v.), Elektronların kinetik enerjisı = 25918.525839869 (a.v.), Virial sərti (-V/T) = 2.0144.

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI Z. Atomu Yükü Koordinatları (Angstremlə)

	1 ana	itoorannatian	(inquirenne)	
		Х	У	Z
1 47	-0.021969	-1.03129185	-1.75593834	-0.73399964
2 47	-0.083623	1.03129108	1.75593846	0.73399969
3 47	-0.072589	1.29925863	-0.45625694	-0.73399964
4 47	0.139290	-0.26796739	-0.45625705	1.46799983
5 47	-0.065796	-1.03129185	0.91251386	-0.73399964
69	-0.128369	1.77192397	-1.85353792	-4.46329600
76	0.054984	1.77192397	-0.52353792	-4.46329600
8 6	0.052301	2.93239801	0.14646208	-4.46329600
11 9	-0.127024	2.93239801	1.47646208	-4.46329600
12 9	-0.104884	-3.37056600	-3.12461306	2.48630400
13 6	0.086149	-3.37056600	-1.79461306	2.48630400
14 6	0.016596	-2.21009196	-1.12461306	2.48630400
17 9	-0.074957	-2.21009196	0.20538694	2.48630400
10 1	0.080484	0.83661653	0.01646208	-4.46329600
15 1	0.100332	-4.30587344	-1.25461306	2.48630400
16 1	0.073733	-1.27478453	-1.66461306	2.48630400
9 1	0.075340	3.86770545	-0.39353792	-4.46329600

Şəkil 16.3. PVDF+Ag5 nanokompoziti

Nəticələrin interpretasiyası. PVDF+Ag5 nanokompozitin ionlaşma potensialının qiyməti: I_p =- ε_{150} = -3.362369eV. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{151} - \varepsilon_{150}$ = 6.570365eV. Bu isə nanokompozitinin dielektrik material olduğunu göstərir. Nanokompozitin möhkəmliyi $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ =3..2851825a.v., burada $\varepsilon_{ABMO} = \varepsilon_{151}$ = 3.207996eV ε_{YTMO} = $\varepsilon_{150} = -3.362369 \text{eV}.$ $\eta > 1 eV$ olduğundan PVDF+Ag₅ nanokompoziti möhkəm material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_{151} =$ 3.207996 eV ən aşağı boş molekulyar orbitalın enerjisi müsbət işarəli olduğuna görə PVDF+Ag₅ nanokompoziti nuklefildir. Nanokompozitinin stabilliyi

 $\Delta E(PVDF + Ag_5) = E_{PVDF+Ag_8} - \frac{5}{2} \cdot E_{Ag_2} - 2E_{C_2} - 2E_{H_2} - 2E_{F_2}$ düsturu ilə hesablanır. $E_{PVDF+Ag_8}$ -PVDF+Ag5 nanokompozitinin, E_{Ag_2} -Ag2 molekulunun, E_{C_2} -C2 molekulunun, E_{H_2} - H2 molekulunun və E_{F_2} - F2 molekulunun tam enerjisidir.

$$\begin{split} E_{Ag_5} =& -26292.60075 \text{a.v.}, \ E_{Ag_2} =& -10299.14996 \text{a.v.}, \\ E_{C_2} =& -74.31543142 \text{a.v.}, \ E_{H_2} =& -1.111298185 \text{a.v.}, \\ E_{F_2} &= E_{F_2} =& -195.9593201 \text{a.v.} \quad \text{olduğundan} \\ \Delta E(PVDF + Ag_5) =& -1.953761166 \text{a.v.} \quad \Delta E(PVDF + Ag_5) <& 0 \\ \text{olduğundan PVDF+Ag_5 nanokompoziti stabildir. PVDF+Ag_5} \\ \text{nanokompozitinin şüalandıracağı fotonun dalğa üzunluğu} \end{split}$$

 $\lambda = 189$ nm olar.

Atomların hesablanmış effektiv yükləri əsasında Ag5 nanohissəciyinin, PP+Ag5 və PVDF+Ag5 nanokompozitlərinin molekulyar dioqramları qurulmuşdur. Dioqramlarda rabitə uzunluqların qiymətləri Anqstremlərlə verilmişdir.

Şəkil 16.4. Ag₅ nanohissəciyinin molekulyar diaqramı diaqramı

Şəkil 16.5. PP+Ag₅ nanokompozitinin

molekulyar

Şəkil 16.6. PVDF+Ag5 nanokompozitinin molekulyar diaqramı

Nəticə. Gümüş nanohissəciyi və onun PP+Ag5, PVDF+Ag5 nanokompozisivaları Xartri-Fok-Rutan (XFR) metodu ilə kompüterdə tədqiq olunmusdur. Gümüs nanohissəciyin və onun nanokompozisiyalarının orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri, nanohissəciyə və onun nanokompozisiyalarına daxi olan atomların effektiv yükləri hesablanmışdır. Hesablamaların nəticələri göstərir ki, gümüş nanohissəciyi PP+Ag₅, və onun PVDF+Ag₅ nanokompozisiyaları möhkəm, nüklefil və stabil dielektrik materiallardır. Gümüş Ag₅ nanohissəciyi və onun PP+Ag₅, PVDF+Ag₅ nanokompozisivaları süalandıracağı fotonun dalğa üzunluğu uyğun olaraq 198nm, 192nm və 189nm-dir.

17.Dəmir nanohissəciyi və onun nanokopozisiyalarının kvantmexaniki tədqiqi

Dəmir nanohissəciklərinin elektronikada və tibdə geniş tətbiq sahələri vardır. Buna görə də dəmir nanohissəcikləri və onun nanokompozisiyalarının elektron quruluşunun kvantmexaniki metodlarla öyrənilməsinin böyük əhəmiyyəti vardır[37, 8]. Dəmir nanohissəciyi və onun nanokompozisiyalarının elektron quruluşu və xassələri Xartri-Fok-Rutan (XFR) metodu ilə öyrənilmişdir. Dəmir Fe₈ nanohissəciyi və onun PP+Fe₈, PVDF+Fe₈ nanokompozisiyalarının tam enerjisini, ionlaşma potensialının qiymətini, elektrik keçiriciliyini, möhkəmliyini və s. tədqiq etmək olar. Hesablamalar zamanı χ_q atom orbitalları olaraq Fe atomundan 1s-, 2s-, 2p_x-, 2p_y-, 2p_z-, 3s-, 3p_x-, 3p_y-, 3p_z-, 3d_x²-, 3d_y²-, 3d_z²-, 3d_{xy} -, 3d_{xz} -, 3d_{yz} -, 4s-, 4p_x-, 4p_y-, 4p_z-, C və F atomlarından 1s-, 2s-, 2p_x-, 2p_y-, 2p_z-, H atomundan isə 1s- orbitalından istifadə edilmişdir. Atom orbitalları kimi Gauss funksiyalarından istifadə olunmuşdur.

Fe₈ nanohissəciyi üçün kompüter hesablamaları

Məlumdur ki, nanohissəciklərin quruluşu və xassələri nanohissəcikdə atomların sayı və ölçüsü ilə müəyyən olunur. N sayda atomdan ibarət olan nanohissəciyin (15.1) düsturu ilə müyyən olunur[34]. N=8 sayda dəmir atomundan ibarət nanohissəciyin ölçüsü D=0,57nm alınır.

Hesablamalar zamanı hər Fe atomundan 19 olmaqla 152 atom orbitalından istifadə edilmişdir. Nanohissəciyin 26*8=208 sayda elektronu ən aşağı enerjili 104 enerji səviyyəsini doldurur. Şəkil 16.1-də Fe₈ üçün seçilmiş fəza quruluşu verilmişdir.

Şəkil 17.1.

Tam enerji Elektronların kinetik enerjisi Virial sərti (-V/T) = -10171.418094282 (a.v.)= 9900.661386989 (a.v.) = 2.0273

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI Z Atomu Yükü Koordinatları(Anastremlə)

		Х	У	Z
1 26	8.228390	-1.23908700	-0.59242850	1.06279800
2 26	8.228306	-1.23908700	1.74754900	1.06279800
3 26	-8.228249	1.10082000	-0.59242850	1.06279800
4 26	-8.229038	1.10094700	1.74754900	1.06279800

5	26	-8.228307	1.10082000	-0.59242850	-1.27725700
6	26	8.228543	-1.23908700	-0.59242850	-1.27719800
7	26	-8.228143	1.10082000	1.74747000	-1.27725700
8	26	8.228501	-1.23908700	1.74765800	-1.27719800

Nəticələrin interpretasiyası. Fe8 nanohissəciyinin 208 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Qadağan olunmuş zonanın qiymətini hesablamaq üçün $\varepsilon_{ABMO} - \varepsilon_{YTMO}$ fərqi tapılır. Burada ε_{ABMO} -ən aşağı boş və ε_{YTMO} -elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. $\varepsilon_{ABMO} = \varepsilon_{105} = -7.131742$ eV, $\varepsilon_{YTMO} = \varepsilon_{104} = -12.686415$ eV, $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 5.554673$ eV. Bu isə Fe nanohissəciyinin dielektrik material olduğunu göstərir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin enerjisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir:

 $I_p = -\varepsilon_{\gamma TMO} = -\varepsilon_{104} = 12.686415 eV[15].$

Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Beləliklə $\eta = 2.7773365$ eV, $\eta > 1eV$ olduğundan Fe nanohissəciyi möhkəm material hesab olunur. ε_{ABMO} mənfi işarəli olduğuna görə Fe nanohissəciyi elektrofildir. Fes nanohissəciyinin stabilliyi $\Delta E(Fe_8) = E_{Fe_8} - 4 \cdot E_{Fe_2}$ düsturu ilə hesablanır. $\Delta E(Fe_8) > 0$ olduqda material qeyri stabil, $\Delta E(Fe_8) < 0$ olduqda material stabil hesab olunur. E_{Fe_8} - Fes nanohissəciyinin, E_{Fe_2} - Fe₂-nin hesablanmış tam enerjisidir. $E_{Fe_8} = -10171.41809$ a.v., $E_{Fe_2} = -2513.261434$ a.v. olduğundan $\Delta E(Fe_8) = -118.3723601$ a.v. $\Delta E(Fe_8) < 0$ olduğundan Fes nanohissəciyi stabildir. Fes nanohissəciyinin şüalandıracağı fotonun dalğa üzunluğu $\lambda = 224$ nm olar.

PP+Fe₈ nanokompoziti üçün kompüter hesablamaları

PP+Fe₈ nanokompozitinin nəzəri modeli kimi iki C₃H₆ polimeri arasında yerləşdirilmiş Fe₈ nanohissəciyinə baxılmışdır. Hesablamalar zamanı hər C atomundan 5, H atomundan bir, Fe atomundan 19 olmaqla 194 bazis funksiyalarından istifadə edilmişdir. Nanokompozitin 256 sayda elektronu ən aşağı enerjili 128 enerji səviyyəsini doldurur. Şəkil 17.2-də PP+Fe8 nanokompoziti üçün seçilmiş nəzəri modelin fəza quruluşu verilmişdir.

Şəkil 17.2. PP+Fe₈ nanokompoziti

Tam enerji	= -11051.24584 (a.v.),
Elektronların kinetik enerjisı	= 10132.206526127 (a.v.),
Virial şərti (-V/T)	= 2.0907.

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI Z Atomu Yükü Koordinatları(Anastremlə)

	1 unu	reorianiatian (i inquienno)			
		Х	У	Z	
1 26	6.704114	-1.23910832	-0.59237454	-1.27722725	
2 26	-7.848253	1.10086245	-0.59250094	-1.27722725	
3 26	6.729828	-1.23910832	1.74753304	-1.27722725	
4 26	-7.851104	1.10086245	1.74753304	-1.27722725	
5 26	7.786721	-1.23910832	1.74753304	1.06282733	
6 26	7.388113	-1.23910832	-0.59237454	1.06276816	
7 26	-7.390213	1.10079035	1.74753304	1.06282733	
8 26	-7.518702	1.10097803	-0.59237454	1.06276816	
13 6	-3.999999	6.87297390	0.48424481	-0.67000387	
14 6	-4.000002	6.04788391	0.80795842	0.33500160	
15 6	-4.000019	4.61481221	0.30129728	0.33500160	
18 6	3.999345	-5.27093976	-0.66931905	-1.66616999	
19 6	4.000217	-5.27093976	0.67068095	-1.66616999	
20	6	5.999555	-6.58729837	1.43068095	-1.66616999
----	---	-----------	-------------	-------------	-------------
11	1	-1.000000	7.89120905	0.84424089	-0.67000387
16	1	-1.000000	6.51973665	-0.13665478	-1.48000828

Nəticələrin interpretasiyası. PP+Fe₈ nanokompozitinin ionlaşma potensialının qiyməti: I_p=- $\varepsilon_{128} = 0.11693$ eV. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{129} - \varepsilon_{128} = 2.681707$ eV. Bu isə PP+Fe₈ nanokompozitinin yarımkeçirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2}(\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablanır. $\varepsilon_{ABMO} = \varepsilon_{129} = 2.564777$ eV. $\varepsilon_{YTMO} = \varepsilon_{128} = -0.11693$ eV. Beləliklə $\eta = 1.3408535$ a.v. $\eta > 1eV$ olduğundan PP+Fe₈ nanokompoziti möhkəm material hesab olunur. ε_{ABMO} müsbət işarəli olduğuna görə PP+Fe₈ nanokompoziti nuklefildir. PP+Fe₈ nanokompozitinin stabilliyi

 $\Delta E(PP + Fe_8) = E_{PP + Fe_8} - 4 \cdot E_{Fe_2} - 3E_{C_2} - 6E_{H_2}$

düsturu ilə hesablanır. E_{PP+Fe_5} - PP+Fe₈ nanokompozitinin, E_{Fe_2} -Fe₂-nin, E_{C_2} - C₂-nin, E_{H_2} - H₂-nin tam enerjisidir. E_{PP+Fe_8} = -11051.24584a.v., E_{Fe_2} =-2513.261434a.v., E_{C_2} = -74.31543142a.v., E_{H_2} = -1.111298185 a.v., olduğundan $\Delta E(PP+Fe_8)$ =-768.5860176a.v. $\Delta E(PP+Fe_8) < 0$ olduğundan PP+Fe₈ nanokompoziti stabildir. PP+Fe₈ nanokompozitinin şüalandıracağı fotonun dalğa üzunluğu λ = 464nm olar.

PVDF+Fe₈ nanokompoziti üçün kompüter hesablamaları

PVDF+Fe8 nanokompozitinin nəzəri modeli kimi iki C₂H₂F₂ polimeri arasında yerləşdirilmiş Fe₈ nanohissəciyinə baxılmışdır. Hesablamalar zamanı hər C və F atomlarından 5, H atomundan bir, Fe atomundan 19 olmaqla 196 sayda bazis funksiyalarından istifadə edilmiş və 196 sayda molekulyar orbital qurulmuşdur. Nanokompozitin 272 sayda elektronu ən aşağı enerjili 136 enerji səviyyəsini doldurur. PVDF+Fe8

na	nok	ompoziti üçün	seçilmiş n	nəzəri model	in fəza qur	uluşu	
Şə.	K11	1/.3-də veriimi	şair.				
Tai	n e	nerji	= -1	0/42.09517072	28 (a.v.)		
Ele	ktro	nlarin kinetik enei	13151 = 1	0452.69430607	"/ (a.v.)		
Vır	nal ş	ərti (-V/T)	= 2.	0277.			
AT	ΌΜ	LARIN EFFEKTİ	V YÜKLƏRI	VƏ KOORDIN	ATLARI		
ΖA	Atom	u Yükü	Koordinatla	rı(Anqstremlə)			
			Х	У	Z		
1	26	7.661104	-1.23908721	-0.59242849	1.06279775		
2	26	7.844495	-1.23908721	1.74754897	1.06279775		
3	26	-7.278534	1.10082036	-0.59242849	1.06279775		
4	26	-7.135825	1.10094677	1.74754897	1.06279775		
5	26	-7.683772	1.10082036	-0.59242849	-1.27725683		
6	26	8.175063	-1.23908721	-0.59242849	-1.27719766		
7	26	-7.915455	1.10082036	1.74747018	-1.27725683		
8	26	8.401979	-1.23908721	1.74765785	-1.27719766		
9	6	-0.932745	0.42866191	-3.57436400	0.39854940		
10	6	-0.406608	0.42866191	-2.23436400	0.39854940		
11	9	1.735796	-0.72315187	-1.56936400	0.39854940		
12	9	-1.004532	1.58047570	-4.23936400	0.39854940		
15	9	-0.125206	-0.09164610	2.24624800	0.77426600		
16	6	-3.249944	1.06882794	4.24624800	0.77426600		
17	6	2.840179	-0.09164610	3.57624800	0.77426600		
18	9	-0.995179	1.06882794	5.57624800	0.77426600		
13	1	1.018749	-0.50664552	-4.11436400	0.39854940		
14	1	-0.951997	1.36396935	-1.69436400	0.39854940		
19	1	0.999348	-1.02695354	4.11624800	0.77426600		
20	1	-0.996907	2.00413537	3.70624800	0.77426600		
		30	/**	fe			
			Fe	4			
)e			н		
		e	Fe		e e		
		.0		- Fa	8		

Şəkil 17.3. PVDF+Fe8 nanokompoziti

Nəticələrin interpretasiyası. PVDF+Fe₈ nanokompozitin ionlaşma potensialının qiyməti: $I_{p}=-\varepsilon_{136}=24.101256\text{eV}$. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{137}-\varepsilon_{136}=4.645418\text{eV}$. Bu isə nanokompozitin dielektrik material olduğunu göstərir. Nanokompozitin möhkəmliyi $\eta = \frac{1}{2}(\varepsilon_{ABMO} - \varepsilon_{YTMO}) = 2.322709 \text{a.v.}$ düsturu ilə hesablanır. Burada $\varepsilon_{ABMO} = \varepsilon_{137} = -19.455838 \text{eV}, \quad \mathcal{E}_{YTMO} = \varepsilon_{136} = -19.455838 \text{eV}.$ $\eta > 1eV$ olduğundan PVDF+Fe₈ nanokompoziti möhkəm material hesab olunur. ε_{ABMO} mənfi işarəli olduğuna görə PVDF+Fe₈ nanokompoziti elektrofildir. Nanokompozitin stabilliyi $\Delta E(PVDF + Fe_8) = E_{PVDF+Fe_8} - 4 \cdot E_{Fe_2} - 2E_{C_2} - 2E_{H_2} - 2E_{F_2}$ düsturu ilə hesablanır. $E_{PVDF+Fe_8}$ -PVDF+Fe₈ nanokompozitin, E_{Fe_2} -Fe₂ -nin, E_{C_2} -C₂-nin, E_{H_2} - H₂-nin və E_{F_2} - F₂-nin tam enerjisidir.

> $E_{PVDF+Fe_8}$ =-10742.095170728a.v., E_{Fe_2} =-2513.261434a.v., E_{C_2} = -74.31543142a.v., E_{H_2} =-1.111298185 a.v., E_{F_2} = -195.9593201a.v. olduğundan

 $\Delta E(PVDF + Fe_8) = -146.277337$ a.v. $\Delta E(PVDF + Fe_8) < 0$ olduğundan PVDF+Fe₈ nanokompoziti stabildir. PVDF+Fe₈ nanokompozitinin şüalandıracağı fotonun dalğa üzunluğu

 $\lambda = 268$ nm olar.

Atomların hesablanmış effektiv yükləri əsasında Fes nanohissəciyinin, PP+Fes və PVDF+Fes nanokompozitlərinin molekulyar dioqramları qurulmuşdur. Diaqramlarda rabitə uzunluqların qiymətləri Anqstremlərlə verilmişdir(Şəkil 17.4-17.6.).

Nəticə. Dəmir nanohissəciyi və onun PP+Fe₈, PVDF+Fe₈ nanokompozisiyaları XFR metodu ilə kompüterdə tədqiq olunmuşdur. Dəmir nanohissəciyin və onun nanokompozisiyalarının orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri, nanohissəciyə və onun nanokompozisiyalarına daxi olan atomların effektiv yükləri hesablanmışdır. Hesablamaların nəticələri göstərir ki, dəmir nanohissəciyi və PVDF+Fe₈ nanokompoziti möhkəm, elektrofil və stabil dielektrik, PP+Fe₈ nanokompozi möhkəm, nuklefil və stabil yarımkeçirici materiallardır.

Şəkil 17.4. Fe₈ nanohissəciyinin molekulyar diaqramı

Şəkil 17.5. PP+Fe₈ nanokompozitinin molekulyar diaqramı

Şəkil 17.6. PVDF+Fe₈ nanokompozitinin molekulyar diaqramı

18.Həcmə mərkəzləşmiş dəmir nanohissəciyi və onun nanokopozisiyalarının kvantmexaniki tədqiqi

dəmir mərkəzləsmis nanohissəciklərinin Həcmə elektronikada və tibdə geniş tətbiq sahələri vardır. Buna görə də həcmə mərkəzləsmis dəmir nanohissəcikləri və onun nanokompozisiyalarının elektron guruluşunun kvantmexaniki metodlarla övrənilməsinin böyük əhəmiyyəti vardır[36, 8]. mərkəzləsmis dəmir nanohissəciyi Həcmə və onun nanokompozisiyalarının elektron guruluşu və xassələri Xartrimetodu ilə övrənilmisdir. Fok-Rutan (XFR) Həcmə mərkəzləşmiş dəmir nanohissəciyi və onun PP+Fe9, PVDF+Fe9 nanokompozisiyalarının tam enerjisini, ionlaşma potensialının qiymətini, elektrik keçiriciliyini, möhkəmliyini və s. tədqiq etmək olar. Hesablamalar zamanı χ_q atom orbitalları olaraq Fe atomundan 1s-, 2s-, 2p_x-, 2p_y-, 2p_z-, 3s-, 3p_x-, 3p_y-, 3p_z-, 3d_x²-, 3dy²-, 3dz²-, 3dxy -, 3dxz -, 3dyz -, 4s-, 4px-, 4py-, 4pz-, C və F atomlarından 1s-, 2s-, 2px-, 2py-, 2pz-, H atomundan isə 1sorbitalından istifadə edilmişdir. Atom orbitalları kimi Gauss funksiyalarından istifadə olunmuşdur.

Fe9 nanohissəciyi üçün kompüter hesablamaları

Məlumdur ki, nanohissəciklərin quruluşu və xassələri nanohissəcikdə atomların sayı və ölçüsü ilə müəyyən olunur. N sayda atomdan ibarət olan nanohissəciyin ölçüsü (15.1) düsturu ilə müyyən olunur[34]. N=9 sayda dəmir atomundan ibarət nanohissəciyin ölçüsü D=0,587nm alınır. Hesablamalar zamanı hər Fe atomundan 19 olmaqla 171 atom orbitalından istifadə edilmişdir. Fe9 nanohissəciyinin 26*9=234 sayda elektronu ən aşağı enerjili 117 enerji səviyyəsini doldurur. Şəkil 18.1-də Fe9 üçün seçilmiş fəza quruluşu verilmişdir.

Tam enerji	= -11424.473812909(a.v.)
Elektronların kinetik enerjisi	= 11140.170314616(a.v.)
Virial şərti (-V/T)	= 2.0255.
	149

Şəkil 18.1.

ATOMLARIN EFFEKTIV YUKLƏRI VƏ KOORDINATLARI					
Yükü	Koordinatları	rdinatları(Anqstremlə)			
	Х	У	Z		
8.364852	-1.23910832	-0.59237449	-1.27722725		
-8.239647	1.10086245	-0.59250089	-1.27722725		
8.455448	-1.23910832	1.74753309	-1.27722725		
-7.978471	1.10086245	1.74753309	-1.27722725		
8.454862	-1.23910832	1.74753309	1.06282733		
8.338149	-1.23910832	-0.59237449	1.06276816		
-7.975956	1.10079035	1.74753309	1.06282733		
-8.267027	1.10097803	-0.59237449	1.06276816		
-1.152236	-0.25996420	0.46059830	-0.08510014		
	ARIN EFFEKT Yükü 8.364852 -8.239647 8.455448 -7.978471 8.454862 8.338149 -7.975956 -8.267027 -1.152236	ARIN EFFEKTIV YUKLƏRI Yükü Koordinatları x 8.364852 -1.23910832 -8.239647 1.10086245 8.455448 -1.23910832 -7.978471 1.10086245 8.454862 -1.23910832 8.338149 -1.23910832 -7.975956 1.10079035 -8.267027 1.10097803 -1.152236 -0.25996420	ARIN EFFEKTIV YUKLƏRI VƏ KOORDIN Yükü Koordinatları(Anqstremlə) x x y 8.364852 -1.23910832 -0.59237449 -8.239647 1.10086245 -0.59250089 8.455448 -1.23910832 1.74753309 -7.978471 1.10086245 1.74753309 8.4554862 -1.23910832 1.74753309 8.338149 -1.23910832 -0.59237449 -7.975956 1.10079035 1.74753309 -8.267027 1.10097803 -0.59237449 -1.152236 -0.25996420 0.46059830		

Nəticələrin interpretasiyası. Fe₉ nanohissəciyinin 234 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Qadağan olunmuş zonanın qiymətini hesablamaq üçün $\varepsilon_{ABMO} - \varepsilon_{YTMO}$ fərqi tapılır. Burada ε_{ABMO} -ən aşağı boş və ε_{YTMO} -elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. $\varepsilon_{ABMO} = \varepsilon_{118} = -9.703837 \text{eV}$, $\varepsilon_{YTMO} = \varepsilon_{117} = -17.703022 \text{eV}$, $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 7.999185 \text{eV}$. Bu isə Fe9 nanohissəciyinin dielektrik material olduğunu göstərir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin enerjisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: Ip=- ε_{YTMO} =- ε_{117} = 17.703022 eV[15]. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Beləliklə, $\eta = 3.9995925$ eV, $\eta > 1eV$ olduğundan Fe9 nanohissəciyi möhkəm material hesab olunur. ε_{ABMO} mənfi işarəli olduğuna görə Fe9 nanohissəciyi elektrofildir. Fe9 nanohissəciyinin stabilliyi $\Delta E(Fe_9) = E_{Fe_9} - 4.5 \cdot E_{Fe_2}$ düsturu ilə hesablanır. $\Delta E(Fe_9) > 0$ olduqda material qeyri stabil, $\Delta E(Fe_9) < 0$ olduqda material stabil hesab olunur. E_{Fe_8} - Fe9 nanohissəciyinin, E_{Fe_2} - Fe2-nin hesablanmış tam enerjisidir. $E_{Fe9} = -11424.47381$ a.v., $E_{Fe_2} = -2513.261434$ a.v. olduğundan $\Delta E(Fe_9) = -114.797361$ 9a.v. $\Delta E(Fe_9) < 0$ olduğundan Fe9 nanohissəciyi stabildir. Fe9 nanohissəciyinin şüalandıracağı fotonun dalğa üzunluğu $\lambda = 155$ nm olar.

PP+Fe9 nanokompoziti üçün kompüter hesablamaları

PP+Fe9 nanokompozitinin nəzəri modeli kimi iki C₃H₆ polimeri arasında yerləşdirilmiş Fe9 nanohissəciyinə baxılmışdır. Hesablamalar zamanı hər C atomundan 5, H atomundan bir, Fe atomundan 19 olmaqla 213 bazis funksiyalarından istifadə edilmişdir. Nanokompozitin 282 sayda elektronu ən aşağı enerjili 141 enerji səviyyəsini doldurur. Şəkil 18.2-də PP+Fe9 nanokompoziti üçün seçilmiş nəzəri modelin fəza quruluşu verilmişdir.

Şəkil 18.2. PP+Fe9 nanokompoziti

Tam enerji= -12301.020290494 (a.v.)Elektronların kinetik enerjisi= 11356.356775207 (a.v.)

151

Virial sərti (-V/T)

Z Atomu	Yükü	Koordinatları(Anqstremlə)		
		Х	У	Z
1 26	6.884879	-1.23910832	-0.59237454	-1.27722725
2 26	-7.964933	1.10086245	-0.59250094	-1.27722725
3 26	6.893423	-1.23910832	1.74753304	-1.27722725
4 26	-7.852645	1.10086245	1.74753304	-1.27722725
5 26	6.719693	-1.23910832	1.74753304	1.06282733
6 26	7.065980	-1.23910832	-0.59237454	1.06276816
7 26	-7.571015	1.10079035	1.74753304	1.06282733
8 26	-7.647958	1.10097803	-0.59237454	1.06276816
9 26	-0.526692	-0.25996420	0.46059830	-0.08510014
14 6	-3.999998	6.87297390	0.48424481	-0.67000387
15 6	-4.000000	6.04788391	0.80795842	0.33500160
16 6	-4.000051	4.61481221	0.30129728	0.33500160
19 6	4.001105	-5.27093976	-0.66931905	-1.66616999
20 6	5.999803	-5.27093976	0.67068095	-1.66616999
21 6	6.000003	-6.58729837	1.43068095	-1.66616999
12 1	-1.000000	7.89120905	0.84424089	-0.67000387
17 1	-1.000000	6.51973665	-0.13665478	-1.48000828
18 1	-1.000364	4.10097779	0.66463457	-0.55497604
13 1	-1.000346	4.10098898	0.66462665	1.22498893
10 1	-1.000067	4.61481221	-0.78870272	0.33500160
11 1	-1.000001	6.40112115	1.42885801	1.14500601
22 1	1.000039	-4.33563232	1.21068095	-1.66616999
23 1	1.000000	-6.38811921	2.50232812	-1.66616999
24 1	1.000000	-7.15886246	1.16736166	-2.55615732
25 1	1.000000	-7.15887491	1.16735593	-0.77619235
26 1	1.000216	-4.33563232	-1.20931905	-1.66616999
27 1	0.998906	-6.20624719	-1.20931905	-1.66616999

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI

Nəticələrin interpretasiyası. PP+Fe9 nanokompozitinin ionlaşma potensialının qiyməti: $I_p = -\varepsilon_{141} = 3.829217 \text{eV}$. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{142} - \varepsilon_{141} = 10.857246$ eV. Bu isə PP+Fe9 nanokompozitinin dielektrik material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablanır. $\varepsilon_{ABMO} = \varepsilon_{142} = 7.028029 \text{eV}.$ $\varepsilon_{YTMO} = \varepsilon_{141} = -3.829217 \text{eV}.$

Beləliklə $\eta = 5.428623$ a.v. $\eta > 1eV$ olduğundan PP+Fe9 nanokompoziti möhkəm material hesab olunur. ε_{ABMO} müsbət işarəli olduğuna görə PP+Fe9 nanokompoziti nuklefildir. PP+Fe9 nanokompozitinin stabilliyi

 $\Delta E(PP + Fe_9) = E_{PP+Fe_9} - 4.5 \cdot E_{Fe_2} - 3E_{C_2} - 6E_{H_2}$ düsturu ilə hesablanır. E_{PP+Fe_9} -PP+Fe_9 nanokompozitinin, E_{Fe_2} -Fe_2-nin, E_{C_2} -C_2-nin, E_{H_2} - H_2-nin tam enerjisidir. $E_{PP+Fe_9} = -12301.02029$ a.v., $E_{Fe_2} = -2513.261434$ a.v., $E_{C_2} = -74.31543142$ a.v., $E_{H_2} = -1.111298185$ a.v., olduğundan $\Delta E(PP + Fe_9) = -761.7297561$ a.v. $\Delta E(PP + Fe_9) < 0$ olduğundan PP+Fe_9 nanokompoziti stabildir. PP+Fe_9 nanokompozitinin şüalandıracağı fotonun dalğa üzunluğu $\lambda = 114$ nm olar.

PVDF+Fe9 nanokompoziti üçün kompüter hesablamaları

PVDF+Fe9 nanokompozitinin nəzəri modeli kimi iki C₂H₂F₂ polimeri arasında yerləşdirilmiş Fe9 nanohissəciyinə baxılmışdır. Hesablamalar zamanı hər C və F atomlarından 5, H atomundan bir, Fe atomundan 19 olmaqla 215 sayda bazis funksiyalarından istifadə edilmiş və 215 sayda molekulyar orbital qurulmuşdur. Nanokompozitin 298 sayda elektronu ən aşağı enerjili 149 enerji səviyyəsini doldurur. PVDF+Fe9 nanokompoziti üçün seçilmiş nəzəri modelin fəza quruluşu Şəkil 18.3-də verilmişdir.

Şəkil 18.3. PVDF+Fe9 nanokompoziti

Tam enerji	= -12264.694592466 (a.v.),
Elektronların kinetik enerjisı	= 11719.656704128 (a.v.),
Virial şərti (-V/T)	= 2.0465.

ATOMLARIN	J EFFEKTÍV	YÜKLƏRI VƏ KOORDINATLARI
Z Atomu	Yükü	Koordinatları(Angstremlə)

			-(
		Х	У	Z
1 26	5.956031	6.76607106	-2.00207211	-1.18715575
2 26	-8.526749	9.10604182	-2.00219852	-1.18715575
3 26	5.179724	6.76607106	0.33783546	-1.18715575
4 26	-8.410465	9.10604182	0.33783546	-1.18715575
5 26	5.869526	6.76607106	0.33783546	1.15289883
6 26	6.453944	6.76607106	-2.00207211	1.15283966
7 26	-8.251410	9.10596973	0.33783546	1.15289883
8 26	-8.378468	9.10615740	-2.00207211	1.15283966
9 26	-1.935518	7.74521500	-0.94909930	0.00497130
11 9	-1.000002	13.29034729	-1.04759505	0.08025453
12 6	-3.997137	10.97805946	-1.05259505	0.08025453
13 6	-4.000175	12.13853350	-0.38259505	0.08025453
14 9	-0.946372	9.82624568	-0.38759505	0.08025453
16 9	6.999946	3.68868298	-2.45944710	-0.30273520
17 6	3.996277	3.68868298	-1.12944710	-0.30273520
18 6	4.003328	4.84915702	-0.45944710	-0.30273520
21 9	6.985613	4.84915702	0.87055290	-0.30273520
10 1	-0.999147	10.97805946	-2.13259505	0.08025453
19 1	1.001813	5.78446446	-0.99944710	-0.30273520
20 1	0.999394	2.75337554	-0.58944710	-0.30273520
15 1	-1.000186	12.13853350	0.69740495	0.08025453

Nəticələrin interpretasiyası. PVDF+Fe9 nanokompozitin ionlaşma potensialının qiyməti: I_p=- ε_{149} = 799.447863eV. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{150} - \varepsilon_{149}$ = 9.602716eV. Bu isə nanokompozitin dielektrik material olduğunu göstərir. Nanokompozitin möhkəmliyi $\eta = \frac{1}{2}(\varepsilon_{ABMO} - \varepsilon_{YTMO}) =$ 4.801358a.v. düsturu ilə hesablanır. Burada $\varepsilon_{ABMO} = \varepsilon_{150} =$ -789.845147eV, $\varepsilon_{YTMO} = \varepsilon_{149} =$ -799.447863eV. $\eta > 1eV$ olduğundan PVDF+Fe9 nanokompoziti möhkəm material hesab olunur. ε_{ABMO} mənfi işarəli olduğuna görə PVDF+Fe9 nanokompoziti elektrofildir. Nanokompozitin stabilliyi

 $\Delta E(PVDF + Fe_9) = E_{PVDF + Fe_9} - 4,5 \cdot E_{Fe_2} - 2E_{C_2} - 2E_{H_2} - 2E_{F_2}$ düsturu ilə hesablanır. $E_{PVDF + Fe_8}$ -PVDF+Fe9 nanokompozitinin, E_{Fe_2} -Fe2 -nin, E_{C_2} -C2-nin, E_{H_2} -H2-nin və E_{F_2} -F2-nin tam enerjisidir. $E_{PVDF + Fe_9}$ =-12264.694592466 a.v., E_{Fe_2} =-2513.261434a.v., E_{C_2} = -74.31543142a.v., E_{H_2} =-1.111298185 a.v., E_{F_2} =-195.9593201a.v. olduğundan

 $\Delta E(PVDF + Fe_9) = -412.246042$ a.v. $\Delta E(PVDF + Fe_9) < 0$ olduğundan PVDF+Fe₉ nanokompoziti stabildir.

PVDF+Fe9 nanokompozitinin şüalandıracağı fotonun dalğa üzunluğu $\lambda = 129$ nm olar.

Atomların hesablanmış effektiv yükləri əsasında Fe9 nanohissəciyinin, PP+Fe9 və PVDF+Fe9 nanokompozitlərinin molekulyar dioqramları qurulmuşdur. Diaqramlarda rabitə uzunluqların qiymətləri Anqstremlərlə verilmişdir(Şəkil 18.4-18.6.).

Şəkil 18.4. Fe9 nanohissəciyinin molekulyar diaqramı

Şəkil 18.5. PP+Fe9 nanokompozitinin molekulyar diaqramı

Şəkil 18.6. PVDF+Fe9 nanokompozitinin molekulyar diaqramı

Nəticə. Həcmə mərkəzləşmiş Fe9 dəmir nanohissəciyi və onun PP+Fe9, PVDF+Fe9 nanokompozisiyaları XFR metodu ilə kompüterdə tədqiq olunmuşdur. Həcmə mərkəzləşmiş dəmir nanohissəcivin və onun nanokompozisiyalarının orbital potensialı, tam elektorn enerjiləri, ionlasma enerjisinin qiymətləri, nanohissəciyə və onun nanokompozisiyalarına daxi olan atomların effektiv yükləri kompüterdə hesablanmışdır. Hesablamaların nəticələri göstərir ki, həcmə mərkəzləşmiş Fe9 dəmir nanohissəciyi və PP+Fe9 nanokompoziti möhkəm, nuklefil. PVDF+Fe9 nanokompozi isə möhkəm elektrofil və stabil dielektrik materiallardır

19. Aliminum nanohissəciyi və onun nanokompozisiyalarının modelləşdirilməsi və sixliq funksionali nəzəriyyəsi metodu ilə tədqiqi

Aluminium nanohissəciklərinin nanoelektronikada. nanofotonokada. nanobiotexnologiyada, tibdə və kosmonavtikada geniş tətbiq sahələri vardır. Buna görə də aluminium nanohissəcikləri və onların nanokompozisiyalarının elektron gurulusunun kvantmexaniki metodlarla övrənilməsinin böyük əhəmiyyəti vardır[11, 8]. Aluminium nanohissəciyi və onun nanokompozisiyalarının elektron quruluşu və xassələri Sıxlıq funksionalı nəzəriyyəsi (SFN) metodu ilə öyrənilmişdir. SFN metodu daha yüksək hesablama dəqiqliyinə malik olmaqla geyri-empirik modelləşdirmədən fərqli olaraq obyektin real elektron quruluşunu təsvir etməyə imkan verir. Hesablanmış \mathcal{E}_i qiymətləri əsasında aluminium nanohissəciyi və onun PP+Al₈, PVDF+Al₈ nanokompozisiyalarının tam enerjisini, ionlaşma potensialının qiymətini, elektrik keçiriciliyini, möhkəmliyini və s. tədqiq etmək olar. Hesablamalar zamanı χ_q atom orbitalları olaraq Al atomundan 1s-, 2s-, 2px-, 2py-, 2pz-, 3s-, 3px-, 3py-, 3pz-, C və F atomlarından 1s-, 2s-, 2px-, 2py-, 2pz-, H atomundan isə 1s - orbitalından istifadə edilmişdir. Atom orbitalları kimi Gauss funksiyalarından istifadə olunmuşdur.

Al₈ nanohissəciyi üçün kompüter hesablamaları

Məlumdur ki, nanohissəciyin quruluşu və xassələri nanohissəcikdə atomların sayı və ölçüsü ilə müəyyən olunur. N sayda atomdan ibarət olan nanohissəciyin ölçüsü(15.1) düsturu ilə müyyən olunur[34]. N=8 sayda aluminium atomundan ibarət (15.1) düsturu ilə hesablanmıs nanohissəciyin ölcüsü D=0,63nm alınır. Hesablamalar zamanı hər Al atomundan 9 72 orbitalından istifadə olmaqla atom edilmisdir. Nanohissəciyin 13*8=104 sayda elektronu ən aşağı enerjili 52

enerji səviyyəsini doldurur. Şəkil 18.1-də Al₈ üçün seçilmiş fəza quruluşu verilmişdir.

Tam enerji	= -1928.9872926 (a.v.)
Elektronların kinetik enerjisi	= 1922.318225472(a.v.)
Karelyasiya enerji	= -0.740363275 (a.v.)
Virial şərti (-V/T)	= 2.0031

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI

L Atomu	i uku	Koorumanan(Anqsuennə)		
		Х	У	Z
1 13	-0.000021	-1.23378679	-0.66354639	-1.09908805
2 13	0.000051	1.12625007	-0.66354673	-1.09908805
3 13	-0.000037	-1.23378679	1.69649002	-1.09908805
4 13	0.000045	1.12625007	1.69649002	-1.09908805
5 13	-0.000273	1.12625007	1.69649002	1.26096705
6 13	0.000283	-1.23378735	1.69649002	1.26096705
7 13	0.000111	-1.23378735	-0.66354704	1.26096705
8 13	-0.000160	1.12625007	-0.66354724	1.26096705

Nəticələrin interpretasiyası. Al₈ nanohissəciyinin 104elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisi $\varepsilon_{YTMO} = \varepsilon_{52} = -3.715706$ eV, ən aşağı boş molekulyar orbitalın enerjisi: $\varepsilon_{ABMO} = \varepsilon_{53} = -$ 2.995985eV. Nanohissəciyin ionlaşma potensialının qiyməti: $I_p = \varepsilon_{52} = 3.715706 eV[15]$. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 0.719721 \text{eV}$. Bu isə Ala nanohissəciyinin kecirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta =$ 0.3598605eV. $\eta < 1eV$ olduğundan Al₈ nanohissəciyi yumşaq material hesab olunur. \mathcal{E}_{ABMO} mənfi işarəli olduğuna görə Al₈ nanohissəciyinin elektrofildir. Al₈ nanohissəciyinin stabilliyi $\Delta E(Al_8) = E_{Al_8} - 4 \cdot E_{Al_7}$ düsturu ilə hesablanır. $\Delta E(Al_8) > 0$

olduqda material qeyri stabil, $\Delta E(Al_8) < 0$ olduqda material stabil hesab olunur. E_{Al_8} - Al_8 nanohissəciyinin, E_{Al_2} - Al_2 -nin hesablanmış tam enerjisidir. $E_{Al_8} = -1928.9872926$ a.v., $E_{Al_2} = -$ 482.1626203a.v. olduğundan $\Delta E(Al_8) = -0.3368114$ a.v. $\Delta E(Al_8) < 0$ olduğundan Al_8 nanohissəciyi stabildir. Al_8 nanohissəciyinin şüalandıracağı fotonun dalğa üzunluğu $\lambda = \frac{ch}{(\varepsilon_{APNO} - \varepsilon_{VTMO}) \times 1.6 \times 10^{-19}} \times 10^9$ nm = 1727nm olar.

Şəkil 19.1. Al₈ nanohissəciyi Şəkil 19.2. Al₈ nanohissəciyinin molekulyar diaqramı

PP+Al₈ nanokompoziti üçün kompüter hesablamaları

PP+Al₈ nanokompozitinin nəzəri modeli kimi iki C₃H₆ polimeri arasında yerləşdirilmiş Al₈ nanohissəciyinə baxılmışdır. Hesablamalar zamanı hər C atomundan 5, H atomundan bir, Al atomundan 9 olmaqla 114 bazis funksiyalarından istifadə edilmişdir. Nanokompozitin 152 sayda elektronu ən aşağı enerjili 76 enerji səviyyəsini doldurur. Şəkil 19.2-də PP+Al₈ nanokompoziti üçün seçilmiş nəzəri modelin fəza quruluşu Şəkil 19.3-də verilmişdir.

Tam enerji	= -2452.4876064 (a.v.)
Elektronların kinetik enerjisı	= 2126.285389224 (a.v.)
Karelyasiya enerji	= -0.798125246 (a.v.)
Virial şərti (-V/T)	= 2.1530

ATOMLARIN EFFEKTİV YÜKLƏRİ VƏ KOORDİNATLARI

Z Atomu	Yükü	Koordinatları(Anqstremlə)		
		Х	у	Z
1 13	5.093863	-1.23378679	-0.66354639	-1.09908805
2 13	-6.564613	1.12625007	-0.66354673	-1.09908805
3 13	2.962022	-1.23378679	1.69649002	-1.09908805
4 13	-7.501561	1.12625007	1.69649002	-1.09908805
5 13	-7.661688	1.12625007	1.69649002	1.26096705
6 13	3.336917	-1.23378735	1.69649002	1.26096705
7 13	5.244583	-1.23378735	-0.66354704	1.26096705
8 13	-8.398846	1.12625007	-0.66354724	1.26096705
96	2.249663	0.56498871	-0.84658288	2.54553302
10 6	-0.001350	0.56498871	0.49341712	2.54553302
11 6	4.504102	-0.75136991	1.25341712	2.54553302
18 6	2.494924	0.67321298	-0.42376293	-2.24659698
19 6	0.507245	0.67321298	0.91623707	-2.24659698
20 6	4.594009	-0.64314564	1.67623707	-2.24659698
15 1	0.950002	-1.32293399	0.99009784	1.65554569
16 1	0.986132	-1.32294644	0.99009210	3.43551065
17 1	-2.214404	1.50029614	1.03341712	2.54553302
12 1	-2.262523	1.50029614	-1.38658288	2.54553302
13 1	0.911836	-0.37031873	-1.38658288	2.54553302
14 1	1.068415	-0.55219075	2.32506429	2.54553302
21 1	-2.356913	1.60852041	-0.96376293	-2.24659698
22 1	0.928135	-0.26209446	-0.96376293	-2.24659698
23 1	-2.195478	1.60852041	1.45623707	-2.24659698
24 1	1.059881	-0.44396648	2.74788424	-2.24659698
25 1	1.003774	-1.21470972	1.41291778	-3.13658431
26 1	1.261772	-1.21472217	1.41291204	-1.35661935

Nəticələrin interpretasiyası. $\varepsilon_{ABMO} = \varepsilon_{77} = -102.463501 \text{eV}.$ $\varepsilon_{YTMO} = \varepsilon_{76} = -103.912029 \text{eV}.$ PP+Al₈ nanokompozitinin ionlaşma potensialının qiyməti: I_p = - ε_{76} = -103.912029 eV. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{ABMO} - \varepsilon_{YTMO}$ =1.448528 eV. Bu isə PP+Al₈ nanokompozitinin keçirici material olduğunu göstərir. Nanokompozitin möhkəmliyi $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablanır. $\eta = 0.724264$ a.v. $\eta < 1eV$ olduğundan PP+Al₈ nanokompoziti yumşaq material hesab olunur. ε_{ABMO} mənfi işarəli olduğuna görə PP+Al₈ nanokompoziti elektrofildir. PP+Al₈ nanokompozitinin stabilliyi

 $\Delta E(PP + Al_8) = E_{PP + Al_8} - 4 \cdot E_{Al_2} - 3E_{C_2} - 6E_{H_2}$

düsturu ilə hesablanır. Burada E_{PP+Al_5} -PP+Al8 nanokompozitinin, E_{Al_2} -Al₂-nin, E_{C_2} -C₂-nin, E_{H_2} -H₂-nin tam enerjisidir.

 E_{PP+Al_8} = -2452.487606 a.v., E_{Al_2} = -482.1626203a.v,

$$\begin{split} E_{C_2} &= -76.0153893 \quad \text{a.v.,} \quad E_{H_2} &= -1.1770491 \text{a.v.} \\ \text{olduğundan} \quad \Delta E(PP + Al_8) &= -288.7286627 \text{a.v.} \\ \Delta E(PP + Al_8) < 0 \quad \text{olduğundan} \quad PP + \text{Al}_8 \quad \text{nanokompoziti} \\ \text{stabildir.} \quad PP + \text{Al}_8 \quad \text{nanokompozitinin} \quad \text{şüalandıracağı} \quad \text{fotonun} \\ \text{dalğa üzunluğu} \quad \lambda = 858 \text{nm olar.} \end{split}$$

PVDF+Al₈ nanokompoziti üçün kompüter hesablamaları

PVDF+Al₈ nanokompozitinin nəzəri modeli kimi iki C₂H₂F₂ polimeri arasında yerləşdirilmiş Al₈ nanohissəciyinə baxılmışdır. Hesablamalar zamanı hər C və F atomlarından 5, H atomundan bir, Al atomundan 9 olmaqla 116 sayda bazis funksiyalarından istifadə edilmiş və 184 sayda molekulyar orbital qurulmuşdur. Nanokompozitin 168 sayda elektronu ən aşağı enerjili 84 enerji səviyyəsini doldurur. PVDF+Al₈ nanokompoziti üçün seçilmiş nəzəri modelin fəza quruluşu Şəkil 19.5-də verilmişdir.

Tam enerji	= -2711.6071413 (a.v.)
Elektronların kinetik enerjisı	= 2403.509511427(a.v.)
Karelyasiya enerji	= -1.638786812 (a.v.)
Virial şərti (-V/T)	= 2.1275

ATOMLARIN	I EFFEK	ГİV YÜKLƏRI V	/Ə KOORDI	NATLARI
Z Atomu	Yükü	Koordinatları	(Anqstremla)
		Х	У	Z

1	13	5.228847	-1.23378679	-0.66354639	-1.09908805
2	13	-10.462091	1.12625007	-0.66354673	-1.09908805
3	13	9.149839	-1.23378679	1.69649002	-1.09908805
4	13	-7.589187	1.12625007	1.69649002	-1.09908805
5	13	-8.800412	1.12625007	1.69649002	1.26096705
6	13	3.392129	-1.23378735	1.69649002	1.26096705
7	13	3.220107	-1.23378735	-0.66354704	1.26096705
8	13	-9.078213	1.12625007	-0.66354724	1.26096705
9	6	2.891050	-0.38036534	-0.38397900	2.63470800
10	6	3.442811	-0.38036534	0.95602100	2.63470800
13	9	5.671773	-1.53217913	-1.04897900	2.63470800
14	9	-0.637222	0.77144844	1.62102100	2.63470800
15	9	4.369657	-0.08480901	-1.94663401	-1.66198900
16	6	3.647599	-0.08480901	-0.61663401	-1.66198900
17	6	-2.948064	1.07566503	0.05336599	-1.66198900
20	9	0.676586	1.07566503	1.38336599	-1.66198900
11	1	-1.413917	0.55494209	-0.92397900	2.63470800
18	1	-2.736886	2.01097247	-0.48663401	-1.66198900
19	1	0.992459	-1.02011645	-0.07663401	-1.66198900
12	1	0.982912	-1.31567278	1.49602100	2.63470800

Şəkil 19.3. PP+Al₈ nanokompoziti Şəkil 19.4. PP+Al₈ nanokompozitinin molekulyar diaqramı

Nəticələrin interpretasiyası. $\varepsilon_{ABMO} = \varepsilon_{85} = -91.042701 \text{eV}$ $\varepsilon_{YTMO} = \varepsilon_{84} = -91.562537 \text{eV}$. PVDF+Al8 nanokompozitin ionlaşma potensialının qiyməti: I_p= ε_{YTMO} =91.562537 eV. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{ABMO} - \varepsilon_{YTMO}$ =0.519836 eV. Bu isə nanokompozitin keçirici material olduğunu göstərir. Nanokompozitin möhkəmliyi $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO}) = 0.259918 \text{a.v.} \quad \text{düsturu} \quad \text{ilə hesablanır.}$ $\eta < 1 eV \quad \text{olduğundan} \quad \text{PVDF+Al}_8 \quad \text{nanokompoziti} \quad \text{yumşaq}$ material hesab olunur. ε_{ABMO} mənfi işarəli olduğuna görə PVDF+Al_8 \quad nanokompoziti \quad \text{elektrofildir.Nanokompozitin} stabilliyi

 $\Delta E(PVDF + Al_8) = E_{PVDF + Al_8} - 4 \cdot E_{Al_2} - 2E_{C_2} - 2E_{H_2} - 2E_{F_2}$ $E_{PVDF+Al_{a}}$ - PVDF+Al_{a} hesablanır. düsturu ilə nanokompozitinin, E_{Al_2} - Al2-nin, E_{C_2} - C2-nin, E_{H_2} - H2 molekulunun və E_{F_2} - F₂-nin tam enerjisidir. $E_{PVDF+Al_8} = -$ 2711.6071413 a.v., $E_{Al_2} = -482.1626203$ a.v., $E_{C_2} = -$ 76.0153893 a.v., $E_{H_2} = -1.1770491$ a.v., $E_{F_2} = -198.7541458$ olduğundan $\Delta E(PVDF + Al_8) = -231.0634917$ a.v. a.v. $\Delta E(PVDF + Al_8) < 0$ olduğundan PVDF+Al₈ nanokompoziti stabildir. PVDF+Al₈ nanokompozitinin şüalandıracağı fotonun dalža üzunluğu $\lambda = 2391$ nm olar. Atomların hesablanmış effektiv yükləri əsasında Al₈ nanohissəciyinin, PP+Al₈ və PVDF+Al8 nanokompozitlərinin molekulyar diagramları qurulmuşdur. Diagramlarda rabitə uzunluqların giymətləri Angstremlərlə verilmişdir(Şəkil 19.2, 19.4, 19.6).

Şəkil 19.5. PVDF+Al₈ nanokompoziti Şəkil 18.6. PVDF+Al₈ nanokompozitinin molekulyar diaqramı

Nəticə. Aluminium nanohissəciyi və onun PP+Al₈, PVDF+Al₈ nanokompozisiyaları SFN metodu ilə kompüterdə tədqiq Aluminium nanohissəciyi olunmusdur. və onun nanokompozisiyalarının orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri, nanohissəciyə və onun nanokompozisiyalarına daxil olan atomların effektiv yükləri hesablanmısdır. Hesablamaların nəticələri göstərir ki. aluminium nanohissəciyi və onun PP+Als. PVDF+Al8 nanokompozisiyaları yumşaq, elektrofil və stabil keçirici materiallardır

20. Silisium nanohissəciyinin modelləşdirilməsi və compüter tədqiqi

Silisium nanohissəciklərinin nanoelektronikada. nanobiotexnologiyada geniş nanofotonokada və tətbia olunmağı istiqamlərində elmi tədqiqat işləri aparılır. Buna görə silisium nanohissəciklərinin elektron də aurulusunun kvantmexaniki metodlarla öyrənilməsinin böyük əhəmiyyəti vardır[39, 34]. Silisium nanohissəciyinin elektron quruluşu və xassələri Sıxlıq funksionalı nəzəriyyəsi (SFN) metodu ilə öyrənilmişdir. Hesablanmış ε_i - orbital enerjilərinin qiymətləri əsasında silisium nanohissəciyinin tam enerjisini, ionlaşma potensialının qiymətini, elektrik keçiriciliyini, möhkəmliyini və s. tədqiq etmək olar. Hesablamalar zamanı γ_{q} atom orbitalları olaraq Si atomundan 1s-, 2s-, 2px-, 2py-, 2pz-, 3s-, 3px-, 3py-, 3pz-, orbitalından istifadə edilmişdir. Atom orbitalları kimi Gauss funksiyalarından istifadə olunmuşdur.

Si12 nanohissəciyi üçün kompüter hesablamaları

Məlumdur ki, nanohissəciklərin quruluşu və xassələri nanohissəcikdə atomların sayı və ölçüsü ilə müəyyən olunur. N sayda atomdan ibarət olan nanohissəciyin ölçüsü (15.1) düsturu ilə müyyən olunur[34]. N=12 sayda silisium atomundan ibarət nanohissəciyin (15.1) düsturu ilə hesablanmış ölçüsü D=0,77nm alınır. Hesablamalar zamanı hər Si atomundan 9 olmaqla 108 atom orbitalından istifadə edilmişdir. Nanohissəciyin 14*12 = 168 sayda elektronu ən aşağı enerjili 84 enerji səviyyəsini doldurur. Şəkil 19.1-də Si₁₂ nanohissəciyi üçün seçilmiş fəza quruluşu verilmişdir.

Tam enerji	= -3433.4192150 (a.v.)
Elektronların kinetik enerjisi	=3381.396057347(a.v.)
Virial şərti (-V/T)	= 2.0151

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI

Z Atomu	Yükü	Koordinatlari(Angstremlə)			
		Х	У	Z	
1 14	-0.013897	-1.27374441	0.35983980	-0.11973150	
2 14	0.013920	-1.27374441	2.57980685	-0.11973150	
3 14	0.013906	-1.63440515	1.46980427	1.76871439	
4 14	-0.013932	0.25404241	1.46979398	-1.28687491	
5 14	0.013897	0.83758641	-0.32617946	-0.11971153	
6 14	-0.013892	-0.32953075	-0.32616923	1.76875685	
7 14	-0.013900	1.78180102	2.57980614	1.76869690	
8 14	0.013914	1.78178236	0.35983060	1.76873191	
9 14	-0.013935	0.25401981	1.46983390	2.93585662	
10 14	0.013902	2.14245624	1.46981979	-0.11973150	
11 14	-0.013895	0.83758594	3.26581967	-0.11973150	
12 14	0.013911	-0.32952756	3.26583799	1.76871328	

Şəkil 20.1. Si₁₂ nanohissəciyinin vizual modelləri

Nəticələrin interpretasiyası. Si₁₂ nanohissəciyinin 168 elektronu ən aşağı enerji səviyyəsindən başlayaraq səviyyələrdə

yerləşdirilir. Elektronlar tərəfindən tutulmuş yuxarı ən səviyyənin eneryisi $\varepsilon_{YTMO} = \varepsilon_{84} = -2.156103$ eV və ən aşağı boş molekulyar orbitalın enerjisi isə $\varepsilon_{ABMO} = \varepsilon_{85} = -1.397206$ eV. İonlaşma potensialın qiyməti: $I_p = -\varepsilon_{YTMO} = 2.156103 \text{eV}$ [15]. Qadağan olunmuş zonanın qiyməti $\varepsilon_{ABMO} - \varepsilon_{YTMO} =$ 0.758897eV. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə bilər. Beləliklə $\eta = 0.379449 \text{eV}$. $\eta < 1 eV$ hesablana olduğundan Si12 nanohissəciyi yumşaq material hesab olunur. mənfi işarəli olduğuna görə Si12 nanohissəciyi \mathcal{E}_{ABMO} nanohissəciyinin elektrofildir. Si12 stabilliyi $\Delta E(Si_{12}) = E_{Si_{12}} - 6 \cdot E_{Si_{12}}$ düsturu ilə hesablanır. Burada $\Delta E(Si_{12})$ Si₁₂ nanohissəciyinin stabilliyini müəyyən edən parametrdir. $\Delta E(Si_{12}) > 0$ olduqda material qeyri stabil, $\Delta E(Si_{12}) < 0$ olduqda material stabil hesab olunur. $E_{Si_{12}}$ - Si₁₂ nanohissəciyinin, E_{Si_2} -Si₂ –nin hesablanmış tam enerjisidir. $E_{Si_{12}} = -3432.305143368$ a.v., $E_{Si_{22}} - 572.0917415$ a.v. olduğundan $\Delta E(Si_{12}) = -0.868766$ a.v. $\Delta E(Si_{12}) < 0$ olduğundan Si12 nanohissəciyi stabildir və Si12 nanohissəciyinin şüalandıracağı fotonun dalğa üzunluğu $\lambda = 1638$ nm olar.

Nəticə. Silisium nanohissəciyi SFN metodu ilə kompüterdə tədqiq olunmuşdur. Nanohissəciyi orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin

qiymətləri, nanohissəciyə daxi olan effektiv atomların yükləri Hesablamaların hesablanmışdır. nəticələri göstərir ki, silisium nanohissəciyi yumşaq, elektrofil və stabil kecirici materiallardır. Si12 nanohissəciyinin şüalandıracağı fotonun dalğa üzunluğu $\lambda = 1638$ nmdir.

Şəkil 20.2. Si₁₂ nanohissəciyinin molekulyar diaqramı

21. Füllerenin modelləşdirilməsi, qeyriemprik və molekulyar dinamika metodu tədqiqi

Füllerenin vizual modeli (Şəkil 21.1) əsasında qeyri empirik metodla aparılmış kompüter hesablamaların nəticəlri aşağıda verilmişdir:

Tam Enerji	= -2244.026659758 (a.v.)
Electronic Kinetic Energy	= 2229.006081245 (a.v.)
Virial şərti (-V/T)	= 2.0067
Orbital enerjilər(eV)	
-301.206862 -301.199121	-301.139369 -301.125562 -300.926552
-300.926440 -300.925260	-300.921661 -300.918489 -300.913707
-300.900482 -300.896185	5 -300.893122 -300.890023 -300.886054
-300.874060 -300.870896	5 -300.868315 -300.866587 -300.861893
-300.849861 -300.837823	3 -300.837062 -300.833442 -300.832808
-300.832635 -300.818635	5 -300.815043 -300.799668 -300.794223
-300.793129 -300.785050	-300.782509 -300.776620 -300.775908
-300.753985 -300.751255	-300.749357 -300.743804 -300.737137
-300.730801 -300.727737	-300.724397 -300.719032 -300.718253
-300.718037 -300.709949	-300.707912 -300.706983 -300.705673
-300.704932 -300.688798	-300.531414 -300.519542 -300.511605
-300.509337 -300.495734	-300.468983 -300.329779 -300.303304
-33.936119 -33.240696	-33.232188 -33.199355 -31.929804
-31.903940 -31.898881	-31.864938 -31.809193 -30.633585
-30.609546 -30.594557	-29.011613 -28.989563 -28.984648
-28.970777 -27.397196	-27.382537 -27.371556 -27.333668
-27.324567 -26.577048	-26.566795 -26.524145 -26.510271

-24.573329	-24.519028	-24.509547	-24.486930) -24.477937
-24.336271	-24.307338	-24.294330	-22.415625	5 -22.406141
-22.397626	-21.410410	-21.396771	-21.386900	-20.912870
-20.888377	-20.884008	-20.875296	-20.847200	-20.241805
-18.868272	-18.843766	-18.807296	-18.803624	4 -17.809424
-17.804473	-17.801207	-17.773580	-17.765149	-17.296279
-17.287662	-17.237489	-16.471459	-15.994314	4 -15.992250
-15.984204	-15.618388	-15.603391	-15.57776	-15.574952
-15.562520	-15.530449	-15.502932	-14.680175	5 -14.672707
-14.636145	-14.605726	-14.596749	-14.132679	-14.124690
-14.035536	-13.895335	-13.877224	-13.839163	3 -13.825122
-13.802158	-13.785371	-13.767062	-13.745173	3 -13.689637
-12.993716	-12.968648	-12.960582	-12.955889	-11.660326
-11.608986	-11.600500	-11.584349	-11.580584	4 -11.543663
-11.538079	-11.520562	-11.273890	-11.255047	7 -11.244823
-11.211829	-11.200366	-10.534298	-10.507930	-10.495844
-10.483316	-7.640657	-7.633648	-7.608807	-7.594392
-7.497366	-7.465322	-7.429183	-7.410152	-7.400602
-5.438873	-5.407673	-5.384205	-5.379228	-5.360008
2.198036	2.261633	2.274268	3.926137	3.933651
3.954433	6.965293	6.971869	6.976987	6.990186
7.036408	7.140795	7.160633	7.208387	9.204135
9.222298	9.240294	9.278164	9.311869	10.289328
10.291763	10.357622	10.392446	11.562409	11.575417
11.627418	11.634351	11.969737	12.032184	12.055945
14.955687	14.961405	14.964444	16.177546	16.216483
16.224519	17.388522	17.398893	17.408842	17.419466
17.437301	18.514975	18.527114	18.545629	19.321905
19.337548	19.367243	19.386943	19.439660	19.483504
19.495611	19.503763	19.509389	20.159985	20.191983
20.223163	20.243678	20.282873	21.605966	21.669869
21.683481	21.691267	21.704316	21.710307	21.736038
23.029529	23.047170	23.055871	23.070399	23.105828
23.245401	23.264195	23.273646	23.724407	23.727666
23.748692	25.639513	25.651055	25.734660	26.567941
26.577258	26.640296	26.659049	26.702545	26.712232
26.751213	26.763926	27.009721	27.074457	27.099948
27.261043	27.284386	27.291515	27.307009	27.368634
28.599862	28.615998	28.634159	28.635106	28.698091
28.798431	28.806757	28.884811	28.929665	28.990683
29.022152	29.031513	29.083582	29.128825	31.350422
31.360882	31.415632	32.101802	32.121873	32.192495
32.200420	32.723503	32.750020	32.801342	32.825399

ATOMLARIN YÜKLƏRI VƏ KOORDINATLARI

Z Atomu	Yükü	Koordinatları(Anqstrem)		rem)	Kütləsi
	(Malliken)	Х	У	Z	
			168		

1	6	0.002444	-6.49839900	5.82487300	1.45692200	12.01100
2	6	0.010547	-6.49839900	7.22500000	1.45692200	12.01100
3	6	-0.003457	-5.28598400	7.92498900	1.45692200	12.01100
4	6	-0.004738	-4.07357100	7.22500200	1.45692200	12.01100
5	6	0.004305	-4.07357100	5.82497700	1.45692200	12.01100
6	6	0.002242	-5.28571800	5.12473100	1.45692200	12.01100
7	6	-0.012459	-7.55610100	5.39226800	0.64825290	12.01100
8	6	-0.011629	-8.20991600	6.52504700	0.14837700	12.01100
9	6	0.003888	-7.55669000	7.65785800	0.64878100	12.01100
10	6	-0.001743	-7.40211000	8.79065100	-0.15975660	12.01100
11	6	-0.002060	-5.13168200	9.05772900	0.64878240	12.01100
12	6	-0.004584	-3.16986000	7.92495000	0.64878340	12.01100
13	6	0.004209	-2.26620900	7.22493100	-0.15948260	12.01100
14	6	-0.000489	-2.26594700	5.82544200	-0.15891440	12.01100
15	6	-0.000421	-3.16936500	5.12471400	0.64920950	12.01100
16	6	-0.001089	-3.82321600	3.99228400	0.14909390	12.01100
17	6	-0.002189	-5.13124600	3.99225100	0.64839110	12.01100
18	6	-0.003241	-6.18914200	3.55977200	-0.15994150	12.01100
19	6	-0.000940	-7.40043700	4.26002600	-0.16036040	12.01100
20	6	-0.001644	-8.70872800	6.52534500	-1.15973500	12.01100
21	6	-0.000705	-8.55219200	5.39300700	-1.96846000	12.01100
22	6	0.008763	-7.89917000	4.26013600	-1.46840700	12.01100
23	6	0.014463	-6.99690100	3.55979300	-2.27622600	12.01100
24	6	0.008614	-5.93885500	3.12753400	-1.46781000	12.01100
25	6	-0.001575	-4.63133000	3.12847200	-1.96797800	12.01100
26	6	-0.001054	-3.57320500	3.56024600	-1.15903600	12.01100
27	6	-0.000963	-2.66956300	4.26063800	-1.96654000	12.01100
28	6	-0.000957	-2.01566800	5.39310400	-1.46682300	12.01100
29	6	-0.003813	-3.82369000	9.05760900	0.14925090	12.01100
30	6	-0.000712	-3.01655600	7.65849000	-4.08359300	12.01100
31	6	-0.012743	-3.16952100	8.79079500	-3.27469400	12.01100
32	6	-0.011563	-4.38204800	9.49090800	-3.27458000	12.01100
33	6	-0.001351	-5.43993100	9.05876000	-4.08329300	12.01100
34	6	-0.000878	-5.28563800	7.92622600	-4.89168200	12.01100
35	6	0.014238	-4.07393400	5.82418000	-4.88837500	12.01100
36	6	0.007536	-3.01458600	5.39260200	-4.08007700	12.01100
37	6	-0.002883	-2.36106100	6.52627900	-3.58267200	12.01100
38	6	-0.002454	-1.86140200	6.52599700	-2.27492800	12.01100
39	6	0.002008	-2.01590300	7.65704300	-1.46729500	12.01100
40	6	0.002511	-2.66939800	8.78972100	-1.96745100	12.01100
41	6	0.004611	-4.63176400	9.92340200	-1.96668800	12.01100
42	6	-0.001803	-5.93967300	9.92338400	-1.46737700	12.01100
43	6	-0.002497	-6.99764500	9.49133100	-2.27604400	12.01100
44	6	0.000718	-6.74763100	9.05880500	-3.58397600	12.01100
45	6	-0.000205	-7.40152100	7.92617700	-4.08357200	12.01100
46	6	0.002400	-6.49818000	7.22657200	-4.89209500	12.01100
47	6	-0.002801	-6.49853400	5.82657400	-4.89241000	12.01100

48	6	-0.003819	-5.28621000	5.12623000	-4.89231300	12.01100
49	6	-0.001691	-3.16921500	4.26089500	-3.27444200	12.01100
50	6	0.000083	-4.38091400	3.56163600	-3.27555900	12.01100
51	6	-0.002230	-5.43842300	3.99490900	-4.08428100	12.01100
52	6	-0.003495	-6.74706700	3.99265100	-3.58386500	12.01100
53	6	-0.002732	-7.40007900	5.12611000	-4.08283700	12.01100
54	6	0.001755	-8.30180800	5.82504000	-3.27631700	12.01100
55	6	0.000199	-8.30334400	7.22498500	-3.27722400	12.01100
56	6	0.000691	-8.55499700	7.65799900	-1.96751300	12.01100
57	6	-0.002625	-7.90152600	8.79082400	-1.46776300	12.01100
58	6	0.011415	-3.57379000	9.49042800	-1.15841300	12.01100
59	6	-0.000207	-6.18965000	9.49056700	-0.15951970	12.01100
60	6	0.008800	-4.07486600	7.22408500	-4.89032900	12.01100

Şəkil 21.1 Füllerenin vizual modelləri

Molekulyar dinamika metod ilə C60 füllerenin tədqiqi

C₆₀ füllerenin müxtəlif temperaturda zamandan asılı olaraq tədqiqi aşağıdakı nəticələri verir:

1.0-dan başlayar 0.001 addımı ilə 1ps qədər zaman müddətində temperaturun T=10K qiymətində aparılmış kompüter hesablaması nəticəsində müəyyən olunur ki, C₆₀ füllerenə daxil olan karbon atomlarının həyəcanlanması baş verdiyinə baxmayaraq, öz stabil formasını saxlayaraq və heç bir fırlanma hərəkəti müşahidə olunmur.

2.0-dan başlayar 0.001 addımı ilə 1ps qədər zaman müddətində temperaturun T=300K qiymətində aparılmış kompüter hesablaması nəticəsində müəyyən olunur ki, füllerenə daxil olan karbon atomlarının həyəcanlanması baş verir, öz stabil formasını saxlayaraq və saat əqrəbinin əksi istiqamətində fırlanma hərəkəti müşahidə olunur. 3.0-dan başlayar 0.001 addımı ilə 1ps qədər zaman müddətində temperaturun T=300K qiymətindən böyük qiymətlərdə aparılmış kompüter hesablamaları nəticəsində aşağıdakılar müəyyən olunur:

T=1000K füllerenə daxil olan karbon atomları həyəcanlanmasının mütəhərrikliyi artır, səthin deformasiya olumasına baxmayaraq, fülleren öz stabil formasını saxlayaraq və saat əqrəbinin əksi istiqamətində fırlanma müşahidə olunur.

T=2000K, füllerenə daxil olan karbon atomları temperaturun artması nəticəsində atomların həyəcanlanması mütəhərrikliyi daha artmış olur, səthin deformasiya olunması aydın hiss olunmaqla, bu nanohissəcik öz stabil formasını saxlayaraq və saat əqrəbinin əksi istiqamətində fırlanma müşahidə olunur.

4.Temperaturun daha yüksək T=6000K qiymətində aparılmış hesablamalar təsdiq edir ki, C_{60} fülleren yüksək temperatura davamlı olduğunu göstərir.

Şəkil 21.2 Füllerenin molekulyar metodu (HyperChem və NanoEngineer-1) ilə aparılmış hesablamalardan sonra alınmış vizual modelləri

5.Temperaturun daha yüksək T=50000K qiymətində isə hesablamalar gösərir ki, C₆₀ füllerenin quruluşunun dağılması müşahidə olunur.

22. Qrafenin modelləşdirilməsi qeyriemprik və molekulyar dinamika metodları ilə tədqiqi

Qrafen - karbon atomunun çoxatomlu təbəqəsi olub və atomlar düzgün altıbucaqlı heksoqonal quruluş əmələ gətirir.

Bu material özünün unikal keyfiyyətləri ilə fərqlənir. Qrafen elektrik cərəyanını keçirir və şəffaflığı ilə diqqəti cəlb edir. Şəffaflıq xüsusiyyətinə görə bir sıra materialların, məsələn, sensor displeylərin yaradılması üçün əvəzsizdir. Belə hesab edilir ki, qrafenin tezliklə elektronika sənayesində geniş tətbiqinə başlanacaqdır. Keçmiş sovet alimləri Konstantin Novoselov və Andrey Qeym qrafenin sintezi və tədqiqi üçün apardıqları elmi işlərinə görə 2010-cu ildə Fizika sahəsində Nobel mükafatı almışlar.

Hal-hazırda qrafenin öyrənilməsi üçün alimlər nəzəri və təcrübi tədqiqatlar aparırlar. ABŞ-ın Kolumbiya universitetinin alimləri iki elektrod arasında yerləşmiş grafen təbəgəli lövhə ilə radio dalğaları qəbul etmək qabiliyyətinə malik olan ən kiçik ölçülü elektron qurğu yaratmışlar və onların istifadəsi reallaşdırilmağa başlanılmışdır. Gələcəkdə belə nanoölçülü radioqəbuledicilər müxtəlif simsiz vericilərin tərkib hissələri ola bilər və onların radio signalları emal edən elektron sexmlərin tərkibində isləməsi imkanları arasdırılır. Bu isə nanoölçülü grafen radiogəbuledicilərinin mobil telefonlarda tətbiq olunmasına imkan verəcəkdir. Bundan əlavə rus alimləri qrafen əsasında planar heteraquruluşlu materialların sintezi və alınmasının yeni metodlarını işləyirlər və belə qrafen əsaslı heteraquruluşlar müxtəlif işıq şüalandırıcı qurğuların tərkib hissəsi olacaqdır. Qrafen maraqlı zona guruluşuna malıkdir. Onun keçirici zonası valent zona ilə 6 nöqtədə kəsişir. Bu isə onun coxlu elektron xassələrinə malik olmasına imkan verir. Qrafen məsaməsi olmayan yarımkeçiricidir. Bununla yanaşı kerici zona ilə valent zonasının toxunma nöqtələrində sonlu məsəma yaranır, yəni qrafen kiçik məsaməli energetik varımkeçirici kimi özunu aparır. Bu isə kvant çuxura oxsar olaraq qrafenin planar heteraquruluşa malik olması ilə əlaqədardır və aşağı temperaturlarda bu energetik məsamənin energetik baryer kimi isifadə olunmasına imkan verir.

Yuxarıda sadalan maraqlı xassələrini nəzərə alaraq qrafenin vizual modelləşdirilməsi və kvantmexaniki metodlarla öyrənilməsi aktualdır. Məlumdur ki, müasir dövrdə qeyri empirik kvantmexaniki, yarım-emprik, molekulyar dinamika və s. metodları mürəkkəb nanosistemlərin elektron və atom quruluşlarının riyazi modelləşdirilməsində geniş tətbiq olunur.

Hal-hazırda yuxarıdakı metodları realizasiya edən kifayət qədər çoxlu sayda müasir kompüter proqramları hazırlanmışdır və istifadə olunur. Modelləşdirmə üçün elm və təhsildə istifadə olunan HeperChem və NanoEngineer-1 proqramlarıdaha münasibdır. Hesablamalar bu proqramlar(demo və free versiyaları istifadə olunmuşdur) tətbiq olunmaqla aparılmışdır. Qrafenin Şəkil 21.2-dəki vizual modelləri qurulmuşdur:.

Şəkil 22.1. Qrafenin vizual modelləri

Qrafen üçün aparılmış kompüter hesablamaları

Tam Enerji	=	-2179.37326	58204 (a.v.)
Electronic Kinetic Energ	y =	2309.16334	1155 (a.v.)
Virial şərti (-V/T)	=	1.9438	
Orbital eneriilər(eV)			
-292.773450 -292.704793	-292.683824	-292.619940	-292.355195
-292.266994 -292.236813	-292.155093	-292.102887	-292.092299
-292.087174 -292.052549	-292.049106	-291.358565	-291.251096
-291.159577 -291.155355	-291.146650	-291.108632	-291.106573
-291.095484 -291.054110	-290.984442	-290.938619	-290.930428
-290.924163 -290.884309	-290.873735	-290.831259	-290.824492
-290.806333 -290.719285	-290.718185	-290.706437	-290.694457
-290.646516 -290.625905	-290.604031	-290.586639	-290.447995
-290.444033 -290.402706	-290.245743	-290.227782	-290.087473

-289.898222	-289.86596	9 -289.81969	92 -289.8069	973 -289.388697
-289.232229	-289.13443	3 -289.11921	10 -289.0750	019 -289.040179
-289.037413	-289.013672	2 -288.97623	38 -288.9712	293 -288.964596
-288.849206	-288.81961	5 -21.21292	2 -21.07535	59 -20.797792
-20.684934	-20.009939	-19.803156	-19.582007	7 -19.046662
-18.985473	-18.872503	-18.643819	-18.296089	9 -18.192875
-17.756457	-17.412327	-17.263154	-17.252593	3 -17.085644
-16.654695	-16.516442	-16.193579	-15.963288	3 -15.613003
-15.549190	-15.482744	-15.103655	-14.919049	9 -14.830886
-14.350466	-14.028093	-13.803709	-13.620650) -13.325003
-13.084739	-12.854110	-12.660000	-12.383546	5 -12.372571
-12.232949	-11.868261	-11.642484	-11.398736	5 -11.293114
-11.046613	-10.987891	-10.907577	-10.627995	5 -10.332886
-9.713055	-9.665075	-9.498095	-9.389856	-9.203797
-9.127592	-8.846323	-8.630215	-8.529009	-8.454713
-8.284635	-8.148183	-7.901460	-7.529473	-7.507155
-7.343735	-7.255040	-7.142924	-7.064360	-7.044499
-6.822965	-6.811950	-6.770504	-6.473078	-6.428887
-6.373185	-6.277489	-6.064315	-6.025156	-5.959462
-5.843034	-5.659933	-5.575812	-5.472049	-5.349245
-5.328186	-5.140439	-5.107073	-4.997737	-4.936510
-4.892665	-4.809928	-4.747203	-4.733031	-4.538105
-4.419840	-4.242064	-4.198858	-4.063475	-4.048222
-4.028295	-3.783638	-3.769701	-3.687738	-3.629573
-3.477706	-3.420211	-3.300633	-3.274071	-2.917640
-2.889969	-2.701717	-2.697233	-2.596353	-2.484298
-2.425559	-2.398627	-1.923561	-1.798672	-1.756769
-1.630971	-1.417570	-1.255316	-1.193432	-0.753015
-0.738170	-0.706683	-0.608270	-0.435386	-0.266416
-0.248189	-0.007091	0.369195	0.900279	0.964658
1.653647	2.799856	4.270771	4.395735	4.776053
5.468393	5.633572	5.738465	6.355027	6.572904
6.659557	6.847332	6.956445	7.049145	7.791427
7.923707	7.961485	8.308866	9.128790	9.392827
9.877148	9.976431	10.471446	11.403624	11.636161
11.902286	11.977364	12.188782	12.219639	12.537593
12.700826	12.967760	13.205904	13.277038	13.418332
13.570879	13.663481	13.732878	13.803839	14.120961
14.349242	14.468700	14.570214	14.700232	14.788637
14.856749	14.902643	15.009378	15.050957	15.266966
15.322412	15.468451	15.672260	15.778911	15.829448
15.963715	15.997688	16.112615	16.207842	16.361640
16.452025	16.608042	16.711872	16.797135	17.016704
17.123386	17.197833	17.270718	17.512852	17.673866
17.766696	17.841526	17.914788	18.003716	18.253752
18.386986	18.633543	18.719780	18.907797	19.127916
19.170328	19.422946	19.706918	19.998175	20.144673

20.631646	20.725650	20.821643	21.064066
21.851247	21.971288	22.083659	22.187221
22.380137	22.592925	22.852501	22.967257
23.309051	23.419322	23.632042	23.756370
24.106054	24.545060	24.876778	24.956127
25.197155	25.252814	25.537634	25.637575
26.515578	26.778117	27.074788	27.206677
27.614612	27.918085	28.345617	28.714471
29.494876	29.888737	30.023296	30.802550
31.360389	31.531358	32.686214	32.890266
	20.631646 21.851247 22.380137 23.309051 24.106054 25.197155 26.515578 27.614612 29.494876 31.360389	20.63164620.72565021.85124721.97128822.38013722.59292523.30905123.41932224.10605424.54506025.19715525.25281426.51557826.77811727.61461227.91808529.49487629.88873731.36038931.531358	20.63164620.72565020.82164321.85124721.97128822.08365922.38013722.59292522.85250123.30905123.41932223.63204224.10605424.54506024.87677825.19715525.25281425.53763426.51557826.77811727.07478827.61461227.91808528.34561729.49487629.88873730.02329631.36038931.53135832.686214

ATOMLARIN YÜKLƏRI VƏ KOORDINATLARI

ΖA	tomu	Yükü	Koord	linatları(Anqstr	emlə)	Kütləsi
			Х	У	Z	
1	6	-0.059702	-5.68814512	-6.36427827	0.67177541	12.01100
2	6	-0.127621	-4.47543842	-7.06443482	0.67177541	12.01100
3	6	-0.003749	4.01451261	-4.96028006	0.68264420	12.01100
4	6	-0.017751	-0.83714320	-4.96494126	0.67177541	12.01100
5	6	0.116607	-5.68921377	-2.16338587	0.67177541	12.01100
6	6	0.085909	-3.26385830	-0.76448433	0.67177541	12.01100
7	6	-0.019748	-6.89802804	1.34061169	0.67177541	12.01100
8	6	-0.062147	-5.68157865	3.43858471	0.67177541	12.01100
9	6	-0.119864	-4.46752357	4.13630828	0.67177541	12.01100
10	6	0.047712	-3.26159614	3.43582514	0.66292123	12.01100
11	6	-0.196298	-2.04636822	4.13315824	0.66291447	12.01100
12	6	0.028606	-0.83287572	3.42873227	0.66744813	12.01100
13	6	-0.183188	0.38694570	4.11918511	0.66479854	12.01100
14	6	0.047254	1.55371139	3.45210298	0.66389057	12.01100
15	6	-0.111376	2.76009770	4.16286710	0.66096364	12.01100
16	6	-0.063169	3.97930943	3.47321672	0.66000434	12.01100
17	6	0.053538	-5.68436028	2.03811266	0.67177541	12.01100
18	6	0.047248	-4.47654780	1.33818366	0.67177541	12.01100
19	6	-0.009541	-3.26385291	2.03572845	0.66958004	12.01100
20	6	0.017272	-2.05096483	1.33287110	0.67404722	12.01100
21	6	-0.023389	-0.84083631	2.03212038	0.67184137	12.01100
22	6	0.011457	0.36897935	1.33772010	0.67337171	12.01100
23	6	-0.008894	1.57325027	2.04548899	0.67045807	12.01100
24	6	0.042784	2.78819959	1.35028898	0.66926859	12.01100
25	6	0.056040	3.99613890	2.05721483	0.66895714	12.01100
26	6	-0.020489	5.21139194	1.36169399	0.66776727	12.01100
27	6	-0.024268	-6.90080971	-0.05988225	0.67177541	12.01100
28	6	0.072948	-4.47756748	-0.06257049	0.67177541	12.01100
29	6	0.111713	-5.68942798	-0.76248557	0.67177541	12.01100
30	6	0.044313	-2.05198419	-0.06598424	0.67177541	12.01100
31	6	0.045774	0.37097384	-0.06614454	0.67118978	12.01100
32	6	0.059268	-0.84019484	-0.76678780	0.67177541	12.01100
33	6	0.076446	2.79397013	-0.05527956	0.67087718	12.01100

34	6	0.081148	1.58473412	-0.76114803	0.67118688	12.01100
35	6	-0.025853	5.21946355	-0.04291221	0.66358873	12.01100
36	6	0.102514	4.00977538	-0.74951001	0.67087385	12.01100
37	6	0.088407	-3.26385830	-2.16411025	0.67177541	12.01100
38	6	0.073026	-4.47590870	-2.86388788	0.67177541	12.01100
39	6	0.057026	-0.83900610	-2.16401277	0.67177541	12.01100
40	6	0.042245	-2.05090396	-2.86440977	0.67177541	12.01100
41	6	0.076169	1.58669325	-2.16139867	0.67175038	12.01100
42	6	0.042174	0.37424931	-2.86311194	0.67425408	12.01100
43	6	0.123194	4.01077300	-2.15434101	0.67036818	12.01100
44	6	0.050683	2.79956739	-2.85939227	0.67531349	12.01100
45	6	-0.057870	5.22419378	-2.85357310	0.67150547	12.01100
46	6	-0.027359	-6.90113102	-2.86333372	0.67177541	12.01100
47	6	-0.016415	-6.90113102	-4.26370665	0.67177541	12.01100
48	6	0.047733	-4.47590870	-4.26413937	0.67177541	12.01100
49	6	0.049236	-5.68814512	-4.96402439	0.67177541	12.01100
50	6	-0.012240	-3.26276164	-4.96455015	0.67177541	12.01100
51	6	0.017359	-2.05029113	-4.26452997	0.67177541	12.01100
52	6	0.025232	0.37572194	-4.26469324	0.67177541	12.01100
53	6	-0.016523	1.58895158	-4.96347440	0.67721376	12.01100
54	6	0.006770	2.80159877	-4.26168079	0.67720726	12.01100
55	6	-0.133870	5.22666116	-4.25877629	0.68239656	12.01100
56	6	0.051537	-3.26276164	-6.36423966	0.67177541	12.01100
57	6	-0.218093	-2.04990936	-7.06448025	0.67177541	12.01100
58	6	0.030098	-0.83714320	-6.36462219	0.67177541	12.01100
59	6	-0.204272	0.37573056	-7.06487760	0.67496635	12.01100
60	6	0.030953	1.59039194	-6.36353266	0.68265853	12.01100
61	6	-0.112741	2.80359318	-7.06392181	0.68585051	12.01100
62	6	-0.057212	4.01649802	-6.36362829	0.67966691	12.01100
63	1	-0.004190	2.75055690	5.24280328	0.65412117	1.00800
64	1	-0.007049	0.38927481	5.19918247	0.66533349	1.00800
65	1	-0.006113	-2.04381819	5.21314957	0.65941853	1.00800
66	1	-0.004976	-4.46465451	5.21628273	0.67862681	1.00800
67	1	-0.001639	-6.61581169	3.98044136	0.67177541	1.00800
68	1	-0.019109	-7.83226109	1.88246833	0.67177541	1.00800
69	1	-0.000443	-7.83718785	-0.59802347	0.67177541	1.00800
70	1	-0.000270	-7.83643846	-2.32333372	0.67177541	1.00800
71	1	-0.019061	-7.83643846	-4.80370665	0.67177541	1.00800
72	1	-0.001377	-6.62345255	-6.90427827	0.67177541	1.00800
73	1	-0.005061	-4.47543842	-8.14443482	0.67177541	1.00800
74	1	-0.005738	-2.05013167	-8.14448023	0.67177541	1.00800
75	1	-0.004367	0.37572987	-8.14486947	0.67915686	1.00800
76	1	0.000884	2.80358917	-8.14391940	0.68356890	1.00800
77	1	0.003077	4.95182069	-6.90359629	0.68212777	1.00800
78	1	0.057822	6.16252129	-4.79780155	0.68659159	1.00800
79	1	0.011065	6.15854959	-2.31193288	0.66925313	1.00800
80	1	-0.018031	6.14355290	1.90707868	0.66215613	1.00800

 81
 1
 -0.001556
 4.90812792
 4.02430304
 0.65971767
 1.00800

 82
 1
 -0.000623
 6.15785835
 -0.57752829
 0.66267724
 1.00800

Nəticələrin interpretasiyası. Qrafenin 392 elektronu ən aşağı səviyyəsindən baslayaraq iki-iki enerii səviyyələrdə verləsdirilir. Elektronlar tərəfindən tutulmus ən yuxarı səviyyənin eneryisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p=-\varepsilon_{186}=0,738170$ eV. Qadağan olunmuş zonanın qiymətini hesablamaq üçün mənfi işarəli ən yuxarı orbital enerji ilə $\varepsilon_{192} = -0.007091$ eV müsbət işarəli ən aşağı orbital enerjinin $\varepsilon_{193} = 0,369195 \text{eV}$ fərqi tapılır: $\varepsilon_{193} - \varepsilon_{192} = 0,376286$ eV. Bu isə onun elektrik keciriciliyinə malik olmasını təsdiq edir. Qrafenin möhkəmliyi $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Burada ε_{ABMO} - ən aşağı boş molekulyar orbitalın enerjisi, ε_{YTMO} elektronlar tərəfindən tutulmuş ən yuxarı tutulmuş molekulyar orbitalın enerjisidir. $\varepsilon_{ABMO} = \varepsilon_{187} = -0,706683 \text{eV}.$ $\varepsilon_{YTMO} =$ $\varepsilon_{186} = -0.738170 \text{eV}$. Beləliklə $\eta = 0.015744 \text{eV}$. $\eta < 1 eV$ olduğundan grafen yumsag material hesab olunur. Eektron

Şəkil 22.2. Qrafenin elektron sıxlığının paylanması

Qrafenin temperatura davamlılığını NanoEngineer-1 proqamı vasitəsilə molekulyar dinamika metodu ilə temperatur və zamandan asılı olaraq tədqiq etmək məqsədilə temperaturun T=300K, 1000K, 2000K, 5000K, 10000K, 11000K, 12000K, 13000K, 14000K, 15000K, 20000K qiymətləri üçün, zamanın 1ps qiymətində, 0-dan başlayaraq 0,001ps addımı ilə 1ps qədər müddətində kompüter hesablamaları aparılmışdır. zaman Alınmış nəticələr əsasında grafenin tam enerjisinin attocoul vahidi ilə verilmiş qiymətlərinin temperaturdan asılılıq qrafiki (Səkil 22.4.) gurulmuşdur. Aparılmış kompüter tədgiqatlarının nəticələri bunu deməyə imkan verir ki, grafen yüksək temperatura davamlı olub və onun quruluşunun dağılması T=15000K giymətində müsahidə olunmağa başlayır, T=16000K qiymətində isə artıq qrafenin quruluşunun dağılması aydın müşahidə olunur və T=20000K giymətində isə onun qurulusunun tamam dağılması müsahidə olunmusdur, bu hala uyğun qrafenin tam enerjisinin zamandan asılılıq qrafiki qurulmumşdur(Şəkil 22.5). Goründüyü kimi tam enerji zamandan asılı olaraq dəyişir. Stabil quruluşlarda isə tam enerjinin qiyməti zamandan asılı olaraq demək olar ki, dəyişmir. Şəkil 22.6-da T=2000K temperaturdakı stabil quruluşun tam enerjisinin zamandan aşılılığı verilmişdir. Nəticələr Cədvəl 22.1. və Cədvəl 22.2. -də verilmisdir.

Temperaturun müxtəlif qiymətlərində və zamanın 1ps qiymətində, 0-dan başlayar 0.001 addımı ilə 1ps qədər zaman müddətində qrafenin NanoEngineer-1 proqramı vasitəsilə aparılmış hesablamalardan sonra alınmış vizual modelləri Cədvəl 22.2. –də verilmişdir

Şəkil 22.3. Qrafenin tam enerjisinin temperaturdan asılılıq qrafiki

Şəkil 22.4. Qrafenin tam enerjisinin zamandan asılılıq qrafiki(T=20000K)

Şəkil 22.5. Qrafenin tam enerjisinin zamandan asılılıq qrafiki(T=2000K)

Sıra	Т	E	
N-si	(temperaturun K ilə	(attacoul)	
	verilmiş qiymətləri)	1attacoul=10 ⁻¹⁸ coul	
1	300	1.33770	
2	1000	3.71546	
3	2000	7.11364	
4	5000	17.3054	
5	10000	29.4025	
6	11000	32.0124	
7	12000	32.3742	
8	13000	33.5636	
9	14000	35.0732	
10	15000	36.2183	
11	16000	39.6897	
12	20000	47.1242	

Cədvəl 21.1. Qrafenin tam enerjisinin temperaturdan asılı hesablanmış qiymətləri

23. DNT-nin modelləşdirilməsi və kompüterdə tədqiqi

DNT çip texnologiyası keçən əsrin 90-cı illərindən yeni texnologiya kimi sürətlə inkisaf etməyə baslamışdır. Bu texnologiyanın fundamental və tətbiqi tibbdə, biologiyada və hətta elektronikada oynayacağı mühüm rolu nəzərə alaraq bu sahədə geniş tədqiqatlara başladılar və hal-hazırda da bu tendensiva sürətlə davam edir. DNT çiplərinin yaradılmasının nəzəri əsasları sadə və avdındır. Bunlar ikiqat spiral strukturlu DNT molekulunun formalaşmasına əsaslanır. Komplementarlıq prinsipinə əsaslanaraq bir qat polinukleotid zəncirindən alınır və DNT molekulunun strukturunu təkrar edir. DNT cipi sahəsi 1 sm² olan lövhədir və burada müəyyən edilmiş sıra ilə qəfəslər var və qəfəslərin hər birində bir qat polinukleotid zənciri verləşir. Bu polinukleotid zəncirlərin sayı 1 milyondan çox ola bilir və hər bir zəncirin uzunluğu 10 - 1000 nukleotid ardıcıllığının uzunluğuna bərabər olur. Son zamanları mikroelektronkanın ehtiyaclarını nəzərə alaraq DNT çiplərinin daha səmərəli sintezini həyata keçirən üsul tapılmışdır. Bu üsul ultrabənövsəyi süalarla litoqrafiya texnologiyasına əsaslanır.

Bu texnologiya vasitəsilə lövhə üzərində oliqonukleotidləri sintez etmək olur. Sonradan oliqonukletid ardıcıllığı bioloji DNT molekulu ilə hibridləsdirilərək lazım olan informasiyanı özündə saxlayır. DNT çiplərinin unikal xassələrindən istifadə edərək onlrın vasitəsilə genomun oxunmasında, analiz edilməsində, mutasiyaların askarlanmasında istifadə edirlər. Bundan başqa DNT çipləri mikroelektronikada informasiya dasıcısı kimi əvəzsiz materiallardır. Genis tətbiq sahələrinə malik olan DNT çiplərinin, xüsusilə onun nano tərtibdə yaradılmış formalarının alıması nanotexnologiyanın ən mühüm naliyətlərindən biridir. Əsas komponenti oliqonukleotid olan DNT ciplərinin bioloji DNT molekulları ilə hibridləşdirilməsi zamanı DNT-nin hansı energetik halda olması mühüm rol oynayır. Energetik vəziyyətlərindən asılı olaraq oliqonukleotidə hibridləsən DNT molekulları spesifik DNT ciplərinin alınmasına şərait yaradır. Buna gğrə də model təcrübələrdə DNT molekulunun energetik səviyyələrinin müəyyən edilməsi, vəni onun temperaturdan asılı olaraq öyrənilməsi mühüm əhəmiyyət kəsb edir.

DNT-nin kompüterdə hesablanması

171 atomdan ibarət DNT-nin qurulmuş vizual modeli əsasında temperatura damamlığını tədqiq etmək üçün zamanın t=1,...,2ps (1ps=10⁻¹² san.) qiymətlərində DNT-nin tam enerjisinin temperaturun [-80°C, +120°C] parçasında hesablanmış qiymətləri Cədvəl 22.1-də verilmişdir və DNT-nin tam enerjisinin temperaturdan asılılıq qrafiki qurulmuşdur(Şəkil 22.5). Şəkil 22.3 və 22.4-də isə temperaturun sərhəd qiymətlərində DNT-nin aparılmış hesablamalardan sonra alınmış formaları verilmişdir.

Nəticələrin interpretasiyası. Temperaturun verilmiş qiymətlərində DNT–nin vizual modelə əsaslanan formasında çox cüzi dəyişiklik baş verir(Şəkil 22.3, Şəkil 22.4). Bunla

yanaşı Şəkil 22.5-dən göründüyü kimi temperaturn armaşı ilə DNT-nin tam enerjisinin çox kiçik xətti dəyişməsinə səbəb olur. Temperaturun T=193,4K və T=393,4K qiymətlərinə uyğun DNT-nin tam enerjiləri fərqi $E_{393,4K} - E_{193,4K}=0,64354$ attacoul bərabərdir. Hesablamaların nəticələri göstərir ki, DNT-nin temperatura davamlı nanomaterial kimi gələcəkdə müxtəlif elektron çiplərdə geniş tətbiq oluna bilər.

Şəkil 22.1. DNT-nin xət, boru, kürə və qələmlərlə, həcmi, silindir formalı vizual modelləri

Cədvəl 23.1. DNT -nin tam enerjisinin temperaturdan asılı hesablanmış qiymətləri

Sıra N-si	Т		Ε
	(temperaturun C və K ilə		(attacoul)
	verilm	iş qiymətləri)	1attacoul=10 ⁻¹⁸
			coul
1	-80	193,4	5,08587
2	-73	200,4	5,13524
3	-63	210,4	5,20618
4	-53	220,4	5,27706
5	-43	230,4	5,34797
6	-33	240,4	5,41863
7	-23	250,4	5,48943
8	-13	260,4	5,56026
9	-3	270,4	5,63103
10	7	280,4	5,70183
11	17	290,4	5,77272
12	27	300,4	5,84327
13	37	310,4	5,91450
14	47	320,4	5,98516
15	57	330,4	6,05577
16	67	340,4	6,12652
17	77	350,4	6,19712
18	87	360,4	6,26839
19	97	370,4	6,33934
20	107	380,4	6,41007
21	117	390,4	6,48069
22	120	393,4	6,50224

Şəkil 23.4. DNT-nin tam enerjisinin temperaturdan asılılıq qrafiki

24. Fe₃O₄ nanohissəciyin modelləşdirilməsi, qeyriempirik və SFN metodları ilə tədqiqi

Fe₃O₄ hissəciyi üçün kompüter hesablamaların nəticələri

Şəkil 24.1. Fe₃O₄ hissəciyinin modelləri

Tam enerji Elektronların kinetik enerjisı Virial şərti (-V/T) = -4041.460231944 (a.v.)= 4016.484721383 (a.v.) = 2.0062

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI Z Atomu Yükü Koordinatları(Anqstremlə) x y z

у 185

3	26	0.325387	-0.71883092	-1.20489795	-0.58858283
5	26	0.260842	1.07250870	1.32842848	-0.58858283
7	26	0.375242	-1.61448609	1.32842848	0.96277123
4	8	-0.203110	2.86384836	1.96175480	-0.58858283
2	8	-0.137197	-2.51014091	1.96175466	2.51412561
6	8	-0.449784	-0.71883092	0.69510205	-0.58858283
1	8	-0.171380	-0.71883092	-3.10489795	-0.58858283

Nəticələrin interpretasiyası. Fe₃O₄ nanohissəciyinin 110 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi $\varepsilon_{YTMO} = \varepsilon_{55} = -4.17087 \text{eV}$, ən aşağı boş molekulyar orbitalın enerjisi $\mathcal{E}_{ABMO} = \mathcal{E}_{56} = -0.97548$ eV-dir. Ionlașma potensialının qiyməti: $I_p = -\varepsilon_{55} = 4.17087 \text{eV}$. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 3.19539$ eV. Bu isə Fe₃O₄ nanohissəciyinin dielektrik material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 1.597695 \text{eV}$. $\eta > 1 \text{eV}$ olduğundan Fe₃O₄ hissəciyi möhkəm material hesab olunur. ε_{ABMO} mənfi işarəli olduğuna görə Fe₃O₄ hissəciyinin elektrofildir. Fe₃O₄ hissəciyinin stabilliyi $\Delta E(\mathrm{Fe}_{3}\mathrm{O}_{4}) = E_{\mathrm{Fe}_{3}\mathrm{O}_{4}} - 3/2 \cdot E_{Fe_{2}} - 2 \cdot E_{O_{2}}$ düsturu ilə hesablanır. Burada $\Delta E(Fe_3O_4)$ Fe_3O_4 hissəciyinin stabilliyini müəyyən edən parametrdir. $E_{\text{Fe}_{2}O_{4}}$ - Fe₃O₄ hissəciyinin, $E_{Fe_{2}}$ -Fe₂ molekulunun, E_{O_2} - O₂ molekulunun tam enerjisidir.

> $E_{\text{Fe}_3\text{O}_4} = -4041.460232 \text{a.v.}, \ E_{Fe_2} = -2497.061118 \text{ a.v. v}$ $E_{O_2} = -147.0186422 \text{a.v.}$

olduğundan $\Delta E(\text{Fe}_3\text{O}_4) = -1.831270805$ a.v. $\Delta E(Fe_3O_4) < 0$ olduğundan Fe₃O₄ hissəciyi stabildir və şüalandiracağı fotonun dalğa uzunluğu 389nm-dir.

Tam enerji	= -3916.861115183 (a.v.)
Elektronların kinetik enerjisı	= 3978.165287900 (a.v.)
_	186

Virial şərti (-V/T)

= 1.9846

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI				
Z Ator	nu Yükü	Koordinatla	rı(Anqstremlə)	
		Х	У	Z
3 26	-14.246023	-0.71883080	-1.20489800	-0.58858280
5 26	2.588963	1.07250900	1.32842800	-0.58858280
7 26	9.257804	-1.61448600	1.32842800	0.96277130
4 8	-3.898432	2.86384800	1.96175500	-0.58858280
2 8	6.001310	-2.51014100	1.96175400	2.51412600
68	2.822991	-0.71883080	0.69510180	-0.58858280
1 8	-2.526635	-0.71883080	-3.10489800	-0.58858280

SFN metodu ilə alınmış nəticələrin interpretasiyası. Fe₃O₄ nanohissəciyinin 110 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi $\varepsilon_{YTMO} = \varepsilon_{55} = -$ 5.222873eV, ən aşağı boş molekulyar orbitalın enerjisi $\varepsilon_{ABMO} =$ $\varepsilon_{56} = -3.302946$ eV. İonlaşma potensialının qiyməti: I_p = $-\varepsilon_{55} =$ 5.222873eV. Qadağan olunmuş zonanın qiyməti $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 1.919927$ eV. Bu isə Fe₃O₄ hissəciyinin keçriciliyə malik material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta =$ 0.9599635eV. $\eta < 1eV$ olduğundan Fe₃O₄ yumşaq material hesab olunur. ε_{ABMO} mənfi işarəli olduğuna görə Fe₃O₄ hissəciyinin elektrofildir. Fe₃O₄ hissəciyinin stabilliyi

 $\Delta E(\text{Fe}_{3}\text{O}_{4}) = E_{\text{Fe}_{3}\text{O}_{4}} - 3/2 \cdot E_{Fe_{2}} - 2 \cdot E_{O_{2}}$ düsturu ilə hesablanır. Burada $\Delta E(\text{Fe}_{3}\text{O}_{4})$ Fe₃O₄ hissəciyinin stabilliyini müəyyən edən parametrdir. E_{Fa} - Fe₃O₄

stabilliyini müəyyən edən parametrdir. $E_{\text{Fe}_3\text{O}_4}$ - Fe₃O₄ hissəciyinin, E_{Fe_2} - Fe₂ molekulunun, E_{O_2} - O₂ molekulunun tam enerjisidir. $E_{\text{Fe}_3\text{O}_4}$ = -3916.861115a.v., E_{Fe_2} = -2383.11261a.v. və E_{O_2} =-147.0186422a.v. olduğundan $\Delta E(\text{Fe}_3\text{O}_4) = -45.90849206 \text{ a.v.} \quad \Delta E(Fe_3O_4) < 0 \text{ olduğundan}$ Fe₃O₄ hissəciyi stabildir və şüalandiracağı fotonun dalğa uzunluğu 647nm-dir.

PE+Fe₃O₄ kompozitinin qeyriempirik metodu ilə tədqiqi

PE+Fe₃O₄ kompoziti üçün hesablamaların nəticəsi aşağıdakı kimidir:

Şəkil 24.2. PE+Fe₃O₄ kompozitinn modeli

Tam enerji	= -4195.614252574 (a.v.)
Elektronların kinetik enerjisı	= 4169.080644763 (a.v.)
Virial şərti (-V/T)	= 2.0064

ATOMLARIN	EFFEKTIV	YÜKLƏRI VƏ KOORDINATLARI
Z Atomu	Yükü	Koordinatları(Anqstremlə)

				· •	
			Х	У	Z
3	26	0.221864	-0.71883081	-1.20489825	-0.58858277
5	26	0.396874	1.07250881	1.32842819	-0.58858277
7	26	0.440870	-1.61448598	1.32842819	0.96277130
4	8	-0.133419	2.86384847	1.96175451	-0.58858277
2	8	-0.302241	-2.51014081	1.96175436	2.51412567
6	8	-0.450579	-0.71883081	0.69510175	-0.58858277
1	8	-0.173012	-0.71883081	-3.10489825	-0.58858277
8	6	-0.127867	-1.54767764	9.04889686	2.42726981
9	6	-0.125944	-1.54767764	10.38889686	2.42726981
14	6	-0.126555	3.35384016	-5.27674196	-0.18115233
15	6	-0.129205	3.35384016	-3.93674196	-0.18115233
12	1	0.062335	-0.61237020	8.50889686	2.42726981
13	1	0.063709	-2.48298507	8.50889686	2.42726981
10	1	0.064090	-2.48298507	10.92889686	2.42726981
11	1	0.063678	-0.61237020	10.92889686	2.42726981
16	1	0.066935	2.41853273	-3.39674196	-0.18115233

17	1	0.059319	4.28914760	-3.39674196	-0.18115233
18	1	0.061512	4.28914760	-5.81674196	-0.18115233
19	1	0.067638	2.41853273	-5.81674196	-0.18115233

Nəticələrin interpretasiyası. PP+Fe₃O₄ üçün elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi $\mathcal{E}_{YTMO} = \mathcal{E}_{71} =$ -4.276877eV, ən aşağı boş molekulyar orbitalın enerjisi ε_{ABMO} $=\varepsilon_{72} = -1.031582$ eV-dir. PE+Fe₃O₄-nn ionlaşma potensialının qiyməti: I_p =- ε_{71} = 4.276877eV. Qadağan olunmuş zonanın $\varepsilon_{A-B-M} \varepsilon_{V-T}$ =3.245295eV. Bu isə PE+Fe₃O₄ qiyməti nanohissəciyinin dielektrik material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 1.6226475 \text{eV}$. $\eta > 1 eV$ olduğundan PE+Fe₃O₄ kompoziti möhkəm material hesab olunur. \mathcal{E}_{ABMO} mənfi işarəli olduğuna görə PE+Fe₃O₄ kompoziti elektrofildir. PE+Fe₃O₄-nin stabilliyi $\Delta E(PE + Fe_{3}O_{4}) = E_{PE + Fe_{3}O_{4}} - 3/2 \cdot E_{Fe_{3}} - 2 \cdot E_{O_{3}} - 2E_{C_{3}} - 4E_{H_{3}}$ düsturu ilə hesablanır. Burada $\Delta E(PE + Fe_3O_4)$ PE+Fe₃O₄ -nin stabilliyini müəyyən edən parametrdir. Burda $E_{\text{PE+Fe}_3O_4}$ - PE+ Fe_3O_4 kompozitinin, E_{Fe_7} - Fe₂ molekulunun, E_{O_7} - O₂ molekulunun tam enerjisidir. $E_{\text{PE+Fe}_3O_4}$ =-4195.614253a.v., E_{Fe_2} =-2497.061118a.v. və E_{O_2} =-147.0186422a.v., E_{c_2} = -74.31543142a.v. $E_{H_2} = -1.111298185a.v.$ olduğundan $\Delta E(PE + Fe_3O_4) = -7.354428599a.v. \quad \Delta E(PE + Fe_3O_4) < 0$ olduğundan PE+ Fe₃O₄ kompoziti stabildir və şüalandiracağı fotonun dalğa uzunluğu 383nm-dir.

PP+Fe₃O₄ kompoziti qeyriempirik metodu ilə tədqiqi

PP+Fe₃O₄ kompoziti üçün hesablamaların nəticəsi aşağıdakı kimidir:

Tam enerji	= -4272.767473206 (a.v.)
Elektronların kinetik enerjisı	= 4245.582457078 (a.v.)
Virial şərti (-V/T)	= 2.0064

ATOMLARIN	EFFEKTİV	YÜKLƏRI VƏ KOORDINATLARI
Z Atomu	Yükü	Koordinatları(Angstremlə)

				· 1	,
			Х	У	Z
3	26	0.261135	-0.71883081	-1.20489825	-0.58858277
5	26	0.615520	1.07250881	1.32842819	-0.58858277
7	26	0.201480	-1.61448598	1.32842819	0.96277130
4	8	-0.003467	2.86384847	1.96175451	-0.58858277
2	8	-0.315370	-2.51014081	1.96175436	2.51412567
6	8	-0.448761	-0.71883081	0.69510175	-0.58858277
1	8	-0.303261	-0.71883081	-3.10489825	-0.58858277
12	6	-0.138630	8.51584371	0.48424481	-0.67000387
13	6	-0.048884	7.69075372	0.80795842	0.33500160
14	6	-0.184007	6.25768203	0.30129728	0.33500160
17	6	-0.185366	-4.81611987	-2.12209505	2.22530372
18	6	-0.055321	-4.81611987	-0.60209505	2.22530372
22	6	-0.145122	-5.97659391	0.06790495	2.22530372
10	1	0.061976	9.53407886	0.84424089	-0.67000387
15	1	0.058220	8.16260646	-0.13665478	-1.48000828
16	1	0.058269	5.74384760	0.66463457	-0.55497604
11	1	0.060629	5.74385879	0.66462665	1.22498893
8	1	0.071052	6.25768203	-0.78870272	0.33500160
19	1	0.062028	-3.78845661	-2.48542442	2.22530372
20	1	0.064991	-5.32994310	-2.48542442	3.11529105
21	1	0.064454	-5.32995429	-2.48543234	1.33532608
9	1	0.061409	8.04399097	1.42885801	1.14500601
23	1	0.076720	-3.88081243	-0.06209505	2.22530372
24	1	0.060087	-5.97659391	1.14790495	2.22530372
25	1	0.050223	-6.91190135	-0.47209505	2.22530372

Şəkil 24.3. PP+ Fe₃O₄ kompozitinin modelləri

Nəticələrin interpretasiyası. PP+Fe₃O₄ kompoziti üçün elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi $\varepsilon_{YTMO} = \varepsilon_{79} = -5.691933$ eV, ən aşağı boş molekulyar orbitalın

enerjisi $\varepsilon_{ABMO} = \varepsilon_{80} = -1.686084$ eV-dir. PE+Fe₃O₄-nn ionlaşma potensialının qiyməti: I_p = - $\varepsilon_{79} = 5.691933$ eV. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{ABMO} - \varepsilon_{YTM} = 4.005849$ eV. Bu isə PP+Fe₃O₄ nanohissəciyinin dielektrik material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 2.0029245$ eV. $\eta > 1eV$ olduğundan PP+Fe₃O₄ kompoziti möhkəm material hesab olunur. ε_{ABMO} mənfi işarəli olduğuna görə PP+Fe₃O₄ + Se₂O₂ - 3*E*_{C2} - 6*E*_{H2} düsturu ilə hesablanır. Burada $\Delta E(PP + \text{Fe}_{3}\text{O}_{4})$ PP+Fe₃O₄ - nin

stabilliyini müəyyən edən parametrdir. Burda $E_{PP+Fe_3O_4}$ / PP+ Fe₃O₄ kompozitinin, E_{Fe_2} - Fe₂ molekulunun, E_{O_2} - O₂ molekulunun tam enerjisidir. $E_{PP+Fe_3O_4}$ = -4272.767473206 a.v., E_{Fe_2} =-2497.061118a.v. və E_{O_2} =-147.0186422a.v., E_{c_2} = -74.31543142a.v. E_{H_2} =-1.111298185a.v. olduğundan $\Delta E(PP + Fe_3O_4)$ = -10.19221781 a.v. $\Delta E(PP + Fe_3O_4) < 0$ olduğundan PP+ Fe₃O₄ kompoziti stabildir və şüalandiracağı fotonun dalğa uzunluğu 310nm-dir.

PVDF+Fe₃O₄-kompozitinin qeyriempirik metodu ilə tədqiqi

PVDF+Fe₃O₄ kompoziti üçün hesablamaların nəticəsi aşağıdakı kimidir:

Şəkil 24.4. PVDF+Fe₃O₄ kompozitinin modelləri

Tam enerji	= -4585.237555872 (a.v.)
Elektronların kinetik enerjisı	= 4553.564713821 (a.v.)
Virial şərti (-V/T)	= 2.0070

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI Z Atomu Yükü Koordinatları(Angstremlə)

		Х	у	Z
3 26	-0.044281	-0.33982217	-1.65970845	-0.58858283
5 26	0.362541	1.45151745	0.87361798	-0.58858283
7 26	-0.022477	-1.23547735	0.87361798	0.96277123
4 8	-0.170771	3.24285710	1.50694431	-0.58858283
2 8	-0.132051	-2.13113217	1.50694416	2.51412561
68	-0.439970	-0.33982217	0.24029155	-0.58858283
1 8	-0.373194	-0.33982217	-3.55970845	-0.58858283
89	-0.088807	-4.15269551	-2.66940452	3.28947167
96	0.111137	-4.15269551	-1.33940452	3.28947167
10 6	0.062755	-2.99222147	-0.66940452	3.28947167
12 9	0.014467	-2.99222147	0.66059548	3.28947167
14 9	-0.041044	2.65341911	-2.63717550	-1.30512450
15 6	0.153986	2.65341911	-1.30717550	-1.30512450
16 6	0.038823	3.81389315	-0.63717550	-1.30512450
17 9	0.085074	3.81389315	0.69282450	-1.30512450
11 1	0.104648	-5.08800295	-0.79940452	3.28947167
13 1	0.129774	-2.05691403	-1.20940452	3.28947167
18 1	0.150039	4.74920059	-1.17717550	-1.30512450
19 1	0.099352	1.71811168	-0.76717550	-1.30512450

Nəticələrin interpretasiyası. PVDF +Fe₃O₄ kompoziti üçün elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi $\varepsilon_{YTMO} = \varepsilon_{87} = -1.387321$ eV, ən aşağı boş molekulyar orbitalın enerjisi $\varepsilon_{ABMO} = \varepsilon_{88} = 4.135264$ eV-dir. PE+Fe₃O₄-nn ionlaşma potensialının qiyməti: I_p =- $\varepsilon_{87} = 1.387321$ eV. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{ABMO} - \varepsilon_{YTM} = 5.522585$ eV. Bu isə PVDF+Fe₃O₄ nanohissəciyinin dielektrik material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2}(\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 2.76129$ eV. $\eta > 1eV$ olduğundan PVDF+Fe₃O₄

kompoziti möhkəm material hesab olunur. \mathcal{E}_{ABMO} müsbət işarəli olduğuna görə PVDF +Fe₃O₄ kompoziti nuklefildir. PVDF +Fe₃O₄-nin stabilliyi

$$\Delta E(PVDF + Fe_3O_4) = E_{Fe_3O_4} - 3/2 \cdot E_{Fe_2} - 2 \cdot E_{O_2} - 2E_{C_2} - 2E_{H_2} - 2E_{F_2}$$

düsturu ilə hesablanır. Burada $\Delta E(PVDF + Fe_3O_4) PVDF + Fe_3O_4$ -nin stabilliyini müəyyən edən parametrdir. Burda $E_{PE+Fe_3O_4}$ - PVDF + Fe_3O_4 kompozitinin, E_{Fe_2} - Fe_2 molekulunun, E_{O_2} - O₂ molekulunun tam enerjisidir.

$$E_{\text{PVDF+Fe},O_4} = -4585.237555872 \text{ a.v.}, E_{Fe_3} = -2497.061118 \text{a.v.},$$

$$E_{o_2} = -147.0186422$$
a.v., $E_{c_2} = -74.31543142$ a.v.,

$$\begin{split} E_{H_2} = -1.111298185 \text{a.v.}, \ E_{F_2} = -195.9593201 \text{a.v.} \text{ olduğundan} \\ \Delta E(\text{PVDF} + \text{Fe}_3\text{O}_4) = -2.836495241 \text{a.v.} \ \Delta E(\text{PVDF} + Fe_3O_4) < 0 \\ \text{olduğundan} \quad \text{PVDF} \quad + \quad \text{Fe}_3\text{O}_4 \quad \text{kompoziti} \quad \text{stabildir} \quad \text{və} \\ \text{şüalandiracağı fotonun dalğa uzunluğu} \quad 225 \text{ nm-dir.} \end{split}$$

(Fe₃O₄)₄ nanohissəciyi üçün qeyriempirik metodu ilə aparılmış kompüter hesablamaları

Şəkil 24.5. (Fe $_3O_4$)₄ nanohissəciyinin modelləri

Tam enerji Elektronların kinetik enerjisi Virial şərti (-V/T) = -17006.475048856 (a.v.) = 16111.129899656 (a.v.) = 2.0556

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI				
Z Atomu	Yükü	Koordina	atları(Anqstrei	mlə)
		Х	У	Z
2 26	8.103589	-2.18272690	1.20178927	0.81345214
3 26	-6.495435	-0.39138728	-1.33153716	0.81345214
4 26	8.087120	-3.07838207	-1.33153716	2.36480620
8 26	-10.055823	2.59416560	-0.48707637	0.81345214
9 26	8.266756	-0.39138728	3.73511571	0.81345214
10 26	8.032069	-2.69276497	-2.49512990	5.21506766
17.00	0.250((7	2 25561746	2 52071976	0.01245214

-		0.000			
8	26	-10.055823	2.59416560	-0.48707637	0.81345214
9	26	8.266756	-0.39138728	3.73511571	0.81345214
10	26	8.032069	-2.69276497	-2.49512990	5.21506766
17	26	-9.250667	3.35561746	2.52071876	0.81345214
18	26	-9.114149	2.69820758	3.45043331	0.81345214
19	26	-10.055119	1.83271351	5.89845020	0.81345214
20	26	1.813498	0.16621231	-2.95070500	6.33101601
21	26	-12.006181	5.37513838	0.88872553	0.81345214
24	26	8.221089	-1.75107318	-3.61249781	7.95210000
13	8	-1.999639	4.47107340	-0.78240179	0.81345214
14	8	-1.549261	1.91147102	1.28603618	0.81345214
15	8	5.997986	-3.26714204	-3.17965137	6.89182684
16	8	3.955593	-0.83711596	-2.34087500	4.83721557
7	8	5.997722	-3.97403689	-1.96486334	3.91616058
1	8	3.958151	-2.18272690	-0.69821073	0.81345214
5	8	5.998520	-2.18272690	3.10178927	0.81345214
6	8	-1.992295	1.39995238	-1.96486349	0.81345214
11	8	3.955163	-0.04419425	5.60312454	0.81345214
22	8	-1.999965	6.27920307	2.55985300	0.81345214
23	8	-1.999055	4.79976380	3.75540146	0.81345214
12	8	0.148228	1.05275931	2.50043331	0.81345214
25	8	-0.018898	-0.23500439	-4.04534406	9.01237334
26	8	-1.999712	1.16954044	-3.56053473	7.82481666
27	8	-1.999603	4.34365586	4.40043329	0.81345214
28	8	-1.999578	3.70962129	6.19377574	0.81345214

Nəticələrin interpretasiyası. (Fe₃O₄)₄ nanohissəciyinin 440 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi $\mathcal{E}_{YTMO} = \mathcal{E}_{220} = -30.1724$ eV, ən aşağı boş molekulyar orbitalın enerjisi $\mathcal{E}_{ABMO} = \mathcal{E}_{221} = -29.750167$ eV. İonlaşma potensialının qiyməti: I_p = - $\mathcal{E}_{220} = 30.1724$ eV. Qadağan olunmuş zonanın qiyməti $\mathcal{E}_{ABMO} - \mathcal{E}_{YTMO} = 0.422233$ eV. Bu isə (Fe₃O₄)₄ nanohissəciyinin keçriciliyə malik material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 0.2111165$ eV. $\eta < 1eV$ olduğundan (Fe₃O₄)₄ yumşaq material hesab olunur. ε_{ABMO} mənfi işarəli olduğuna görə (Fe₃O₄)₄ nanohissəciyinin elektrofildir. (Fe₃O₄)₄ nanohissəciyinin stabilliyi $\Delta E((\text{Fe}_3\text{O}_4)_4) = E_{(\text{Fe}_3\text{O}_4)_4} - 4 \cdot (3/2 \cdot E_{Fe_2} + 2 \cdot E_{O_2})$ düsturu ilə hesablanır. Burada $\Delta E((\text{Fe}_3\text{O}_4)_4)$ (Fe₃O₄)₄ hissəciyinin stabilliyini müəyyən edən parametrdir. $E_{(\text{Fe}_3\text{O}_4)_4} - \text{Fe}_3\text{O}_4$ hissəciyinin, E_{Fe_2} - Fe₂ molekulunun, E_{O_2} - O₂ molekulunun tam enerjisidir. $E_{(\text{Fe}_3\text{O}_4)_4} = -17006.47505$ a.v., $E_{Fe_2} = -2383.11261$ a.v. və $E_{O_2} = -147.0186422$ a.v. olduğundan $\Delta E((\text{Fe}_3\text{O}_4)_4) = -1531.650254$ a.v. $\Delta E((\text{Fe}_3\text{O}_4)_4) < 0$ olduğundan (Fe₃O₄)₄ nanohissəciyi stabildir.

$(Fe_3O_4)_4$ nanohissəciyi üçün SFN metodu ilə aparılmış kompüter hesablamalrın nəticələri

Tam enerji	= -16939.972913162 (a.v.)
Elektronların kinetik enerjisı	= 16091.156546124 (a.v.)
Virial şərti (-V/T)	= 2.0528

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI Z Atomu Yükü Koordinatları(Anqstremlə)

				< I	,
			Х	У	Z
2	26	0.213519	-2.18272700	1.20178900	0.81345210
3	26	-10.170670	-0.39138730	-1.33153700	0.81345210
4	26	8.160734	-3.07838200	-1.33153700	2.36480600
8	26	-11.999238	2.59416600	-0.48707630	0.81345210
9	26	6.065779	-0.39138730	3.73511600	0.81345210
10	26	11.999418	-2.69276500	-2.49513000	5.21506800
17	26	-11.058836	3.35561700	2.52071900	0.81345210
18	26	-10.948800	2.69820800	3.45043300	0.81345210
19	26	-12.050793	1.83271400	5.89845000	0.81345210
20	26	14.035147	0.16621230	-2.95070500	6.33101600
21	26	-12.007550	5.37513800	0.88872560	0.81345210
24	26	15.991908	-1.75107300	-3.61249800	7.95210000

13	8	-1.999990	4.47107300	-0.78240180	0.81345210
14	8	-1.999462	1.91147100	1.28603600	0.81345210
15	8	5.998316	-3.26714200	-3.17965100	6.89182700
16	8	6.003779	-0.83711600	-2.34087500	4.83721600
7	8	5.997687	-3.97403700	-1.96486300	3.91616100
1	8	-0.183084	-2.18272700	-0.69821070	0.81345210
5	8	5.968923	-2.18272700	3.10178900	0.81345210
6	8	-1.998139	1.39995200	-1.96486300	0.81345210
11	8	0.024644	-0.04419425	5.60312500	0.81345210
22	8	-1.999957	6.27920300	2.55985300	0.81345210
23	8	-1.999828	4.79976400	3.75540100	0.81345210
12	8	-2.015536	1.05275900	2.50043300	0.81345210
25	8	5.995241	-0.23500440	-4.04534400	9.01237300
26	8	-2.023167	1.16954000	-3.56053500	7.82481700
27	8	-2.000002	4.34365600	4.40043300	0.81345210
28	8	-1.999945	3.70962100	6.19377600	0.81345210

Nəticələrin interpretasiyası. (Fe₃O₄)₄ nanohissəciyinin 440 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi $\varepsilon_{YTMO} = \varepsilon_{220} = -24.153743 \text{eV}$, ən aşağı boş molekulyar orbitalın enerjisi $\mathcal{E}_{ABMO} = \mathcal{E}_{221} = -$ 23.742201eV. İonlaşma potensialının qiyməti: $I_p = -\varepsilon_{220} =$ Qadağan olunmuş 24.153743eV zonanın qivməti $\varepsilon_{ABMO} - \varepsilon_{YIMO} = 0.411542 \text{eV}$. Bu isə (Fe₃O₄)₄ nanohissəciyinin keçriciliyə malik material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. n =0.205771eV. $\eta < 1eV$ olduğundan (Fe₃O₄)₄ yumşaq material hesab olunur. \mathcal{E}_{ABMO} mənfi işarəli olduğuna görə (Fe₃O₄)₄ nanohissəciyinin elektrofildir. (Fe₃O₄)₄ nanohissəciyinin $\Delta E((\mathrm{Fe}_{3}\mathrm{O}_{4})_{4}) = E_{(\mathrm{Fe}_{3}\mathrm{O}_{4})_{4}} - 4 \cdot (3/2 \cdot E_{Fe_{2}} + 2 \cdot E_{O_{2}})$ stabilliyi ilə hesablanır. Burada $\Delta E((Fe_3O_4)_4)$ $(Fe_3O_4)_4$ düsturu hissəciyinin stabilliyini müəyyən edən parametrdir. $E_{(\text{Fe}_{2}\text{O}_{4})_{4}}$ -

Fe₃O₄ hissəciyinin, E_{Fe_2} - Fe₂ molekulunun, E_{O_2} - O₂ molekulunun tam enerjisidir.

 $E_{(\text{Fe}_{3}\text{O}_{4})_{4}} = -16939.97291 \text{a.v.}, E_{Fe_{2}} = -2383.11261 \text{a.v.} v \Rightarrow$ $E_{O_{2}} = -148.1418541 \text{a.v.}$ olduğundan $\Delta E((\text{Fe}_{3}\text{O}_{4})_{4}) = -1456.162421 \text{a.v.}$ $\Delta E((\text{Fe}_{3}\text{O}_{4})_{4}) < 0$ olduğundan $(\text{Fe}_{3}\text{O}_{4})_{4}$ nanohissəciyi stabildir.

25. ZnS nanohissəciyi və onun nanokompozisiyalarının modelləşdirilməsi və tədqiqi

ZnS nanohissəciyi üçün qeyriempirik metodla ilə aparılmış kompüter hesablamalrın nəticələri

Şəkil 25.1. (ZnS)4 nanohissəciyinin modelləri

Tam Enerji	= -8601.822530176 (a.v.)
Elektronların kinetik enerjisı	= 8556.068336418 (a.v.)
Virial şərti (-V/T)	= 2.0053

ATOMLA	RIN YÜKLƏF	RI VƏ KOORE	INATLARI	
Z Atomu	Yükü	Koordinatları(Anqstrem)		
		Х	У	Z
1 16	-0.228518	2.86114728	2.29915486	0.38667600
2 16	-0.045481	-5.00236341	2.29915486	0.38667600
3 16	-0.228290	-1.07060807	-4.51084512	0.38667600
4 30	0.139867	-1.07060807	-2.24084512	0.38667600
5 30	0.140752	-3.03648573	1.16415488	0.38667600

6	30	0.140286	0.89526960	1.16415488	0.38667600
7	16	-0.015268	-1.07060807	0.02915488	0.38667600
8	30	0.096650	-1.07060807	0.02915488	-1.88332400

Nəticələrin interpretasiyası. ZnS nanohissəciyinin 184 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi $\varepsilon_{\gamma TMO} = \varepsilon_{92} = -3.351554 \text{eV}$, ən aşağı boş molekulyar orbitalın enerjisi $\varepsilon_{ABMO} = \varepsilon_{93} = 3,105533$ eV və ionlașma potensialinin qiyməti: $I_p = -\varepsilon_{92} = 3.351554 \text{eV}.$ Qadağan olunmuş zonanın qiyməti: $\mathcal{E}_{ABMO} - \mathcal{E}_{YTMO}$ =5.563311eV. Bu isə ZnS nanohissəciyinin dielektrik material olmasını göstərir. ZnS nanohissəciyinin möhkəmliyi $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta =$ 2.7816555eV. $\eta > 1eV$ olduğundan ZnS nanohissəciyinin möhkəm material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_{93} = 3,105533 \text{eV}$ ən aşağı boş molekulyar orbitalın enerjisi müsbət olduğuna görə nanohissəciyinin nuklefildir. ZnS ZnS nanohissəciyinin nanohissəciyinin stabilliyi

$$\begin{split} \Delta E(Zn_4S_4) &= E_{Zn_4S_4} - 2 \cdot E_{Zn_2} - 2 \cdot E_{S_2} & \text{düsturu} \text{ ilə hesablanır.} \\ \text{Burada} \quad \Delta E(Zn_4S_4) & \text{Zn}4\text{S}4\text{-in stabilliyini} & \text{müəyyən edən} \\ \text{parametrdir.} \quad \Delta E(Zn_4S_4) > 0 & \text{olduqda material qeyri stabil,} \\ \Delta E(Zn_4S_4) &< 0 & \text{olduqda material stabil hesab olunur.} & E_{Zn_4S_4} - \\ \text{ZnS} & \text{nanohissəciyinin,} & E_{Zn_2} - & \text{Zn2} & \text{molekulunun,} & E_{S_2} - & \text{S2} \\ \text{molekulunun tam enerjisidir.} & E_{Zn_4S_4} = -32876,58817 & \text{a.v.,} & E_{Zn_2} = \\ -3514,638404 & \text{a.v.,} & \text{və} & E_{S_2} = -785,9793878 & \text{a.v.} & \text{olduğundan} \\ \Delta E(Zn_4S_4) &= -0,586947106 & \Delta E(Zn_4S_4) < 0 & \text{olduğundan} & \text{ZnS} \\ \text{nanohissəciyi} & \text{stabildir və şüalandıracağı fotonun dalğa} \\ \text{uzunluğu} & \lambda = 224 \text{nm-dir.} \end{split}$$

Virial şərti (-V/T) $= 2.0052$						
AT	ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI					
ΖA	tomu	Yükü	Koordin	atları(Anqstre	emlə)	
			Х	y	Z	
5	6	-0.142234	0.40965570	0.24305990	-0.67000390	12.01100
6	6	-0.046700	-0.41543430	0.56677350	0.33500160	12.01100
7	6	-0.184028	-1.84850600	0.06011234	0.33500160	12.01100
10	16	-0.154807	8.41356600	-4.38633700	0.31090700	32.06400
11	16	-0.277781	12.69393000	1.66697900	0.31090700	32.06400
12	16	-0.066403	6.27342200	1.66697900	-3.39601300	32.06400
13	30	0.136975	7.34349400	0.91032110	-1.54255300	65.37000
14	30	0.127700	10.55375000	0.91032110	0.31090700	65.37000
15	30	0.193185	8.41356600	-2.11633700	0.31090700	65.37000
16	16	0.040785	8.41356600	0.15366270	0.31090700	32.06400
17	30	0.001045	7.34347100	0.91033760	2.16434700	65.37000
22	6	-0.144408	18.52340000	0.48424480	-0.67000390	12.01100
23	6	-0.046194	17.69831000	0.80795840	0.33500160	12.01100
24	6	-0.183840	16.26524000	0.30129730	0.33500160	12.01100
9	1	0.068982	-2.36234000	0.42344960	-0.55497600	1.00800
4	1	0.063471	-2.36232900	0.42344170	1.22498900	1.00800
1	1	0.068284	-1.84850600	-1.02988800	0.33500160	1.00800
18	1	0.063275	16.26524000	-0.78870270	0.33500160	1.00800
19	1	0.057741	18.05154000	1.42885800	1.14500600	1.00800
20	1	0.054981	19.54163000	0.84424090	-0.67000390	1.00800
21	1	0.068110	15.75141000	0.66462670	1.22498900	1.00800
2	1	0.059260	-0.06219703	1.18767300	1.14500600	1.00800
3	1	0.054835	1.42789100	0.60305600	-0.67000390	1.00800
8	1	0.058130	0.05641846	-0.37783970	-1.48000800	1.00800
25	1	0.055433	18.17016000	-0.13665480	-1.48000800	1.00800
26	1	0.074203	15.75140000	0.66463460	-0.55497600	1.00800

PP+ZnS – nanokompoziti üçün qeyriemprik metod ilə kompüter hesablamaları

= -8833.114488824 (a.v.)

= 8787.562501669 (a.v.)

Tam Enerji

1

Elektronların kinetik enerjisı

Şəkil 25.2. PP+(ZnS)₄ nanokompozitinin modelləri

199

Nəticələrin interpretasiyası. PP+(ZnS)₄ nanokompozitinin üçün elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi $\varepsilon_{YTMO} = \varepsilon_{116} = -3.316548 \text{ eV}$, ən aşağı boş molekulyar orbitalın enerjisi $\varepsilon_{ABMO} = \varepsilon_{117} = 1.439883 \text{ eV}$ və ionlaşma potensialının qiyməti: $I_P = -\varepsilon_{YTMO} = 3.316548 \text{eV}$. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 4.756431 \text{eV}$. Bu isə PP+ZnS nanohissəciyinin dielektrik material olmasını göstərir. PP+ZnS nanohissəciyinin möhkəmliyi $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 2.3782155 \text{eV}$. $\eta > 1 \text{eV}$ olduğundan PP+(ZnS)₄ nanokompoziti möhkəm material hesab olunur. Ən aşağı boş molekulyar orbitalın enerjisi ε_{ABMO} müsbət olduğuna görə PP+(ZnS)₄ nanokompoziti nuklefildir. PP+(ZnS)₄ nanokompozitinin stabilliyi

$$\begin{split} \Delta E(PP+Zn_4S_4) &= E_{Zn_4S_4} - 2 \cdot E_{Zn_2} - 2 \cdot E_{S_2} - 3 \cdot E_{C_2} - 6 \cdot E_{H_2} \\ \text{düsturu} \ \text{ilə} \ \text{hesablanır.} \ \text{Burada} \ \Delta E(PP+Zn_4S_4) \ \text{Zn4S4-in} \\ \text{stabilliyini} \ \text{müəyyən} \ \text{edən} \ \text{parametrdir.} \ \Delta E(PP+Zn_4S_4) > 0 \\ \text{olduqda} \ \text{material} \ \text{qeyri} \ \text{stabil}, \ \Delta E(PP+Zn_4S_4) < 0 \ \text{olduqda} \\ \text{material} \ \text{stabil} \ \text{hesab} \ \text{olunur.} \ E_{PP+Zn_4S_4} - PP+ZnS \\ \text{nanokompozitinin,} \ E_{Zn_2} - Zn_2 \ \text{molekulunun,} \ E_{s_2} - S \\ \text{molekulunun,} \ E_{C_2} \ C_2\text{-nin} \ \text{və} \ E_{H_2} \ \text{H_2-nin} \ \text{tam} \ \text{enerjisidir.} \\ E_{PP+Zn_4S_4} = -8833.114489 \ \text{a.v.}, \ E_{Zn_2} = -3514,638404 \ \text{a.v.}, \ E_{S_2} = -785,9793878, \ E_{C_2} = -74.31543142 \ \text{eV} \ \text{və} \ E_{H_2} = -1.111298185 \\ \text{a.v.} \ \text{olduğundan} \ \Delta E(PP+Zn_4S_4) = -2.26482239\text{eV}. \\ \Delta E(PP+Zn_4S_4) < 0 \ \text{olduğundan} \ PP+(ZnS)_4 \ \text{nanokompoziti} \\ \text{stabildir} \ \text{və} \ \text{süalandıracağı} \ \text{fotonun} \ \text{dağa} \ \text{uzunluğu} \ \lambda = 261\text{nm-dir.} \end{split}$$

Tan	n Enerii	i uð aparm	111ş nesadıan – _92	251 328136920	(a v)
Electronic Kinetic Energy $- 0240 301533000 (a.v.)$					
Viri	ial corti	(V/T)	y = 22	1007	(u.v.)
V II I	iai şərti	(- • / 1)	- 2.0	5002	
AT	OMLA	RIN EFFEKT	İV YÜKLƏRI '	VƏ KOORDIN	ATLARI
ΖA	tomu	Yükü	Koordinatlar	n(Anqstremlə)	
			Х	У	Z
2	9	-0.349708	1.09298400	0.44434400	0.00000000
3	6	0.138910	-1.21930400	0.43934400	-0.00000000
4	6	0.153080	-0.05882999	1.10934400	-0.00000000
5	9	-0.357895	-2.37111800	1.10434400	0.00000000
7	16	-0.473249	12.25649000	2.29915500	0.38667600
8	16	-0.499510	4.39298400	2.29915500	0.38667600
9	16	-0.509438	8.32473900	-4.51084500	0.38667600
10	30	0.561517	8.32473900	-2.24084500	0.38667600
11	30	0.572460	6.35886200	1.16415500	0.38667600
12	30	0.567904	10.29062000	1.16415500	0.38667600
13	16	-0.962108	8.32473900	0.02915497	0.38667600
14	30	0.737594	8.32473900	0.02915497	-1.88332400
16	9	-0.358103	19.02060000	0.44434400	0.00000000
17	6	0.148813	16.70831000	0.43934400	-0.00000000
18	6	0.141002	17.86878000	1.10934400	-0.00000000
19	9	-0.342729	15.55649000	1.10434400	0.00000000
6	1	0.212673	-0.05882999	2.18934400	-0.00000000
15	1	0.203628	16.70831000	-0.64065600	-0.00000000
1	1	0.204804	-1.21930400	-0.64065600	-0.00000000
20	1	0.210356	17.86878000	2.18934400	-0.00000000
			6		
		í.	i,		2
-		+ :	in the	2 Acres	Contra des
			1	J . I C	Coord of

PVDF+(ZnS)₄ nanokompoziti üçün qeyriemprik metod ilə kompüterdə aparılmış hesablamalar

Şəkil 25.3. PVDF+(ZnS)4 nanokompozitinin modelləri

Nəticələrin interpretasiyası. PVDF+ZnS nanokompozitinin 248 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi $\varepsilon_{YTMO} = \varepsilon_{124} = -8.10793$ eV, ən

aşağı boş molekulyar orbitalın enerjisi $\varepsilon_{ABMO} = \varepsilon_{125} = -$ 5.173701eV və ionlaşma potensialının qiyməti: $I_p = -\varepsilon_{yTMO} =$ 8.10793eV. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{ABMO} - \varepsilon_{YTMO}$ =2.934229eV. Bu isə PVDF +ZnS nanohissəciyinin dielektrik material olmasını göstərir. PVDF+ZnS nanohissəciyinin möhkəmliyi $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. 1.4671145eV. $\eta > 1eV$ olduğundan PVDF+ZnS $\eta =$ nanohissəciyinin möhkəm material hesab olunur. ε_{ABMO} ən aşağı boş molekulyar orbitalın enerjisi müsbət olduğuna görə PVDF+ZnS nanokompoziti nuklefildir. PVDF+ZnS nanokompozitinin stabilliyi $\Delta E(PVDF + Zn_4S_4) = E_{Zn_4S_4} - 2 \cdot E_{Zn_2} - 2 \cdot E_{Sn_2} - 2 \cdot E_{Cn_2} - 2 \cdot E_{Hn_2}$ düsturu ilə hesablanır. Burada $\Delta E(PVDF + Zn_4S_4)$ Zn4S4-in parametrdir. stabilliyini müəyyən edən $\Delta E(PVDF + Zn_4S_4) > 0$ olduqda material qeyri stabil, $\Delta E(PVDF + Zn_4S_4) < 0$ olduqda material stabil hesab olunur. $E_{PVDF+Zn.S.}$ - PVDF+ZnS nanokompozitinin, E_{Zn} - Zn2 molekulunun, E_{s_2} - S molekulunun, E_{C_2} C2-nin, E_{F_2} F2-nin və E_{H_2} H₂-nin tam enerjisidir.

 $E_{PVDF+Zn_4S_4} = -9251.328137$ a.v., $E_{Zn_2} = -3514,638404$ a.v.,

 $E_{S_2} = -785,9793878, E_{C_2} = -74.31543142 \text{eV},$

$$\begin{split} E_{F_2} &= -195.9593201 \text{eV} \quad \text{v} \Rightarrow \ E_{H_2} = -1.111298185 \text{a.v. olduğundan} \\ \Delta E(PVDF + Zn_4S_4) = -28.5598302 \text{eV}. \quad \Delta E(PVDF + Zn_4S_4) < 0 \\ \text{olduğundan} \quad PVDF \quad +\text{ZnS} \quad \text{nanokompoziti} \quad \text{stabildir} \quad \text{v} \Rightarrow \\ \text{süalandıracağı fotonun dalğa uzunluğu} \quad \lambda = 424 \text{ nm-dir}. \end{split}$$

26. Sirkonim dioksid nanohissəciyi və onun nanokompozisiyalarinin modelləşdirilməsi və tədqiqi

Sirkonim dioksid nanohissəciklərinin genis tətbiq sahələri vardır[30]. Buna görə də sirkonim dioksid nanohissəcikləri və onların nanokompozisivalarının elektron quruluşunun kvantmexaniki metodlarla öyrənilməsinin böyük əhəmiyyəti vardır[8, 15]. Sirkonim dioksid nanohissəciyi və onun nanokompozisiyalarının elektron quruluşu və xassələri Xartri-Fok-Rutan (XFR) metodu ilə öyrənilmişdir. Sirkonim nanohissəciyi və onun PP+ZrO₂, PVDF+ZrO₂ dioksid nanokompozisiyalarının tam enerjisini, ionlaşma potensialının qiymətini, elektrik keciriciliyini, möhkəmliyini və s. tədqiq etmək olar. Hesablamalar zamanı y_q atom orbitalları olaraq Zr atomundan 1s-, 2s-, 2px-, 2py-, 2pz-, 3s-, 3px-, 3py-, 3pz-, 3dx²-, 3dy²-, 3dz²-, 3dxy-, 3dxz-, 3dyz-, 4s-, 4px-, 4py-, 4pz-, 4dx²-, 4dy²-, 4dz²-, 4dxy-, 4dxz-, 4dyz-, 5s-, 5px-, 5py-, 5pz-, C, O və F atomlarından 1s-, 2s-, 2px-, 2py-, 2pz-, H atomundan isə 1s- orbitalından istifadə edilmişdir. Atom orbitalları kimi Gauss funksiyalarından istifadə olunmusdur[10]. Hesablamalar zamanı Mathcad, MS Excel və HyperChem programı istifadə olunmuşdur.

ZrO2 nanohissəciyi üçün kompüter hesablamaları

Məlumdur ki, nanohissəciklərin quruluşu və xassələri nanohissəcikdə atomların sayı və ölçüsü ilə müəyyən olunur. N sayda ZrO₂ – dən ibarət olan nanohissəciyin ölçüsü

 $D = 2*r*\sqrt[3]{N}$ (26.1)

düsturu ilə hesablana bilər. Burada r = r1 + 2*r2, r1 - Zr atomunun, r2 - O atomunun kovalent radiusu, $N - ZrO_2$ -nin sayıdır. r1=0,145nm, r2=0,073 nm və N=9 olduqda sirkonim dioksid nanohissəciyin (26.1) düsturu ilə hesablanmış ölçüsü D=1,2nm alınır. Hesablamalar zamanı hər Zr atomundan 29 olmaqla 29*9=261, O atomundan 5 olmaqla 5*18=90 atom

orbitalından istifadə edilmişdir. (26.1) düsturu əsasında 351 sayda molekulyar orbital qurulmuşdur. Nanohissəciyin 504 sayda elektronu ən aşağı enerjili 252 enerji səviyyəsini doldurur. Şəkil 26.1-də (ZrO₂)₉ üçün seçilmiş fəza quruluşu verilmişdir.

Şəkil 26.1. $(ZrO_2)_9$ nanohissəciyinin xətt, kürə-silindir və kürələrlə vizual modelləri

Tam enerji	=	-32876.588165500 (a.v.)
Elektronların kinetik enerjisi	=	32503.105788184 (a.v.)
Virial şərti (-V/T)	=	2.0115

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI Z Atomu Yükü Koordinatları(Angstremlə)

	1 01104			
		Х	у	Z
3 40	0.598598	-5.59789930	-3.25602845	4.57141363
4 40	0.604038	-4.88144756	1.56574038	2.58681135
6 40	0.544658	1.60081672	-1.59456895	1.09249355
9 40	0.555248	0.04365576	0.62811962	0.47349562
12 40	0.557386	-2.57465918	1.91757279	1.08417086
16 40	0.583131	-6.19626588	-0.56023420	3.98748188
21 40	0.597746	1.38482183	-4.15952085	2.59048731
24 40	0.615033	-0.60326842	-5.54230784	3.92755547
27 40	0.554658	-3.41814080	-5.19790998	4.57141363
10 8	-0.305858	-0.91698385	2.46106421	-0.23106174
11 8	-0.219605	-1.60751114	0.10318373	1.77855513
58	-0.296791	-4.48567155	1.08005868	0.48934009
13 8	-0.315831	-3.48652865	3.22512073	2.58806797
14 8	-0.224028	-4.14695010	0.11949550	4.04116552
15 8	-0.319458	-6.93123559	1.38531135	3.30737646
1 8	-0.316416	-5.59789930	-5.43916095	4.57141363
17 8	-0.320228	-6.87699465	-1.84109068	5.63233928
18 8	-0.286939	-5.91718841	-2.25867702	2.65584037
19 8	-0.148577	-0.07703159	-2.85112231	1.67176557
20 8	-0.284285	3.06128100	-3.14055177	1.62732641
78	-0.296105	1.65449015	0.43363490	1.92340257

22	8	-0.443416	0.90946610	-6.28998514	2.54842251
23	8	-0.403699	0.67817118	-3.91265932	4.62562702
8	8	-0.288813	0.88542916	-0.90666249	-0.83773203
25	8	-0.162045	-2.31290783	-4.89681121	2.72929060
26	8	-0.288281	-1.89728567	-6.57080457	5.35210902
2	8	-0.290117	-3.55974123	-3.17068555	5.34401980
8 25 26 2	8 8 8 8	-0.288813 -0.162045 -0.288281 -0.290117	0.88542916 -2.31290783 -1.89728567 -3.55974123	-0.90666249 -4.89681121 -6.57080457 -3.17068555	-0.8377320 2.729290 5.352109 5.3440198

Nəticələrin interpretasiyası. ZrO₂ nanohissəciyinin 504 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı səviyyənin eneryisi əks işarə ilə ionlaşma potensialının qiymətinə bərabərdir: $I_p = -\varepsilon_{252} = 6.538526$ eV. Qadağan olunmuş zonanın qiymətini hesablamaq üçün mənfi işarəli ən yuxarı orbital enerji ilə ε_{252} = -6,538526, müsbət işarəli ən aşağı orbital energinin $\varepsilon_{253} = 3,105533$ fərqi tapılır: $\varepsilon_{253} - \varepsilon_{252} =$ 9.644059 eV. Bu isə ZrO2 nanohissəciyinin dielektrik material olmasını göstərir. edir. ZrO2 nanohissəciyinin möhkəmliyi $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. Burada ε_{ABMO} ən aşağı boş molekulyar orbitalın enerjisi, ε_{YTMO} -elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisidir. $\varepsilon_{ABMO} = \varepsilon_{253} = 3,105533 \text{eV}.$ $\varepsilon_{YTMO} = \varepsilon_{252} = -6,538526 \text{eV}.$ Beləliklə $\eta = 4.8220295 \text{eV}$. $\eta > 1 eV$ olduğundan ZrO2 nanohissəciyinin möhkəm material hesab olunur. $\varepsilon_{ABMO} =$ ε_{253} = 3,105533eV ən aşağı boş molekulyar orbitalın enerjisi müsbət olduğuna görə ZrO2 nanohissəciyinin nuklefildir. ZrO2 nanohissəciyinin stabilliyi

$$\Delta E(Zr_9O_{18}) = E_{Zr_9O_{18}} - \frac{9}{2} \cdot E_{Zz_2} - 9 \cdot E_{O_2}$$

düsturu ilə hesablanır. Burada $\Delta E(Zr_9O_{18})$ ZrO2-in stabilliyini müəyyən edən parametrdir. $\Delta E(Zr_9O_{18}) > 0$ olduqda material qeyri stabil, $\Delta E(Zr_9O_{18}) < 0$ olduqda material stabil hesab olunur. $E_{Zr_9O_{18}}$ - ZrO2 nanohissəciyinin, E_{Zz_7} - Zr₂ molekulunun, E_{O_2} - O₂ molekulunun tam enerjisidir. $E_{Zr_9O_{18}} = -32876.58817$ a.v., $E_{Zz_2} = -7009.498508$ a.v., və $E_{O_2} = -147.0186422$ a.v. olduğundan $\Delta E(Zr_9O_{18}) = -10.67709958$ a.v. $\Delta E(Zr_9O_{18}) < 0$ olduğundan ZrO₂ nanohissəciyi stabildir və şüalandıracağı fotonun dalğa uzunluğu $\lambda = 129$ nm-dir.

PP+(*zrO*₂)₉ nanokompoziti üçün kompüter hesablamaları

 $PP+(z_{rO_2})_9$ nanokompozitinin nəzəri modeli kimi iki C₃H₆ polimeri arasında yerləşdirilmiş (ZrO_2)₉ nanohissəciyinə baxılmışdır. Hesablamalar zamanı hər C və O atomundan 5, H atomundan bir, Zr atomundan 29 olmaqla 393 bazis funksiyalarından istifadə edilmişdir. Nanokompozitin 552 sayda elektronu ən aşağı enerjili 276 enerji səviyyəsini doldurur. Şəkil 26.2-də PP+ZrO₂ nanokompoziti üçün seçilmiş nəzəri modelin fəza quruluşu verilmişdir.

Şəkil 26.2. $PP+(ZrO_2)_9$ nanokompoziti

Tam enerji	=	-33108.030802107 (a.v.)
Elektronların kinetik enerjisı	=	32733.222157158 (a.v.)
Virial şərti (-V/T)	=	2.0115

ATOMLAF	RIN EFFEKT	İV YÜKLƏRI	VƏ KOORDIN	ATLARI	
Z Atomu	Yükü	Koordinatları(Anqstremlə)			
		Х	у	Z	
3 40	0.630620	-5.11733838	-3.11664840	5.57830621	
4 40	0.629024	-5.19863361	1.04397802	2.11111875	

6	40	0.620954	1.38380247	-1.53491604	0.60372870
9	40	0.629322	-0.37856323	0.41566167	-0.29362379
12	40	0.621285	-3.02182250	1.46774231	0.32813261
16	40	0.623773	-6.02207405	-0.71709204	4.17277707
21	40	0.631756	1.39395580	-3.76509782	2.54960869
24	40	0.632975	-0.31447251	-5.14107968	4.26974221
27	40	0.622636	-2.97011268	-4.87776322	5.57830621
10	8	-0.326982	-1.71992453	1.72795796	-1.40994106
11	8	-0.294469	-1.36486567	0.87982317	1.59566024
5	8	-0.303597	-4.34866774	-0.23360799	0.55673787
13	8	-0.323662	-4.50767023	2.86090010	1.12230064
14	8	-0.305895	-4.36919528	0.68978354	4.10126045
15	8	-0.324104	-7.19654586	0.43972706	2.73649177
1	8	-0.320251	-5.11733838	-5.29132671	5.57830621
17	8	-0.327317	-6.71181973	-1.68779062	6.00960645
18	8	-0.292871	-5.04591676	-2.52343748	3.48126676
19	8	-0.287712	0.27301375	-1.90168488	2.42600552
20	8	-0.329566	2.86671677	-3.06798760	1.09543231
7	8	-0.320372	1.76279253	0.54657000	0.05742369
22	8	-0.317375	0.32542311	-5.65251125	2.25991949
23	8	-0.317313	1.51347431	-4.01990971	4.70181639
8	8	-0.313165	-0.28636587	-1.71636275	-0.77192554
25	8	-0.286570	-2.12113395	-4.03544569	3.77185902
26	8	-0.329889	-1.34714605	-6.33218978	5.78374709
2	8	-0.314399	-3.21354622	-3.00415997	6.64848321
28	6	-0.142106	2.36873888	-10.81423945	1.13218479
29	6	-0.049198	2.36873888	-9.47423945	1.13218479
30	6	-0.186712	1.05238026	-8.71423945	1.13218479
37	6	-0.145012	-9.64067087	2.89765291	2.83169842
38	6	-0.051022	-9.64067087	4.23765291	2.83169842
39	6	-0.183894	-10.95702949	4.99765291	2.83169842
34	1	0.056446	3.30404631	-8.93423945	1.13218479
35	1	0.057283	3.30404631	-11.35423945	1.13218479
36	1	0.057409	1.43343144	-11.35423945	1.13218479
31	1	0.072952	1.25155942	-7.64259228	1.13218479
32	1	0.067634	0.48081618	-8.97755874	0.24219746
33	1	0.063452	0.48080373	-8.97756447	2.02216243
40	1	0.062008	-10.75785033	6.06930009	2.83169842
41	1	0.067556	-11.52859357	4.73433363	1.94171108
42	1	0.067273	-11.52860602	4.73432789	3.72167605
43	1	0.065548	-8.70536344	2.35765291	2.83169842
44	1	0.057145	-10.57597831	2.35765291	2.83169842
45	1	0.056401	-8.70536344	4.77765291	2.83169842

Nəticələrin interpretasiyası. PP+ $(z_{rO_2})_9$ nanokompozitinin ionlaşma potensialının qiyməti: I_p =- ε_{276} = 7.261014eV.

Qadağan olunmuş zonanın qiyməti: $\varepsilon_{277} - \varepsilon_{276} = 10.393691 \text{eV}$. Bu isə PP+ (ZrO₂)₉ nanokompozitinin dielektrik material olduğunu göstərir. Nanokompozitin möhkəmliyi $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablanır. $\varepsilon_{ABMO} = \varepsilon_{277} =$ 3.132677 eV. $\varepsilon_{YTMO} = \varepsilon_{276} = -7.261014 \text{eV}$. Beləliklə $\eta =$ 5.1968455 a.v. $\eta > 1 \text{eV}$ olduğundan PP+(ZrO₂)₉ nanokompoziti möhkəm material hesab olunur. ε_{ABMO} müsbət işarəli olduğuna görə PP+ZrO₂ nanokompoziti nuklefildir. PP+ (ZrO₂)₉ nanokompozitinin stabilliyi

 $\Delta E \left(PP + (ZrO_2)_9 \right) = E_{PP + (ZrO_2)_9} - 4.5 \cdot E_{Zr_2} - 9E_{O_2} - 3E_{C_2} - 6E_{H_2}$

düsturu ilə hesablanır. Burada $E_{PP+(ZtO_2)_9}$ - PP+ $(zro_2)_9$ nanokompozitinin, E_{Zr_2} -Zr₂-nin, E_{O_2} -O₂-nin, E_{C_2} -C₂-nin, E_{H_2} - H₂-nin tam enerjisidir.

 $E_{PP+ZtO2} = -33108.0308 \text{ a.v.}, E_{Zr_2} = -7009.498508 \text{ a.v.},$

 $E_{O_2} = -147.0186422 \text{ a.v.}, \quad E_{C_2} = -74.31543142 \text{ a.v.},$

 E_{H_2} =-1.111298185a.v., olduğundan

 $\Delta E(PP + ZrO_2) = -12.50565282 \quad \text{a.v.} \quad \Delta E(PP + (ZrO_2)_9) < 0$ olduğundan PP+ (ZrO₂)₉ nanokompoziti stabildir və şüalandıracağı fotonun dalğa uzunluğu $\lambda = 120$ nm-dir.

PVDF+(*zrO*₂)₉ nanokompoziti üçün kompüter hesablamaları

 $PVDF+(z_ro_2)_9$ nanokompozitinin nəzəri modeli kimi iki C₂H₂F₂ polimeri arasında yerləşdirilmiş (z_ro_2)₉ nanohissəciyinə baxılmışdır. Hesablamalar zamanı hər C,O və F atomlarından 5, H atomundan bir, Zr atomundan 29 olmaqla 395 sayda bazis funksiyalarından istifadə edilmiş və 395 sayda molekulyar orbital qurulmuşdur. Nanokompozitin 568 sayda elektronu ən aşağı enerjili 284 enerji səviyyəsini doldurur. PVDF+ (z_ro_2)₉ nanokompoziti üçün seçilmiş nəzəri modelin fəza quruluşu Şəkil 26.3-də verilmişdir.

Şəkil 26.3. PVDF+ZrO2 nanokompoziti

Tam enerji	= -33420.315552295 (a.v.)
Elektronların kinetik enerjisi	= 33042.025937857 (a.v.)
Virial şərti (-V/T)	= 2.0114

ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI

Z Atomu	Yükü	Koordinatları(Anqstremlə		
		Х	У	
				-

			Х	У	Z
3	40	0.728652	-2.70703131	-0.06666558	-0.81600220
4	40	0.631350	-4.57188493	1.74313904	3.65941109
6	40	0.649717	-1.57707908	-4.80446015	5.62678184
9	40	0.718785	-2.60397821	-2.25179120	6.94945200
12	40	0.590683	-4.19172849	0.03390851	5.84390659
16	40	0.590557	-3.93263000	2.11478104	1.07165100
21	40	0.650982	-0.48841303	-5.30658316	3.08136677
24	40	0.464143	0.22736622	-4.85550295	0.43625392
27	40	0.640047	-0.34558945	-2.78837955	-0.81600220
10	8	-0.331236	-4.36570081	-1.09749104	7.64945357
11	8	-0.299715	-2.23823895	-0.81298562	5.36646213
5	8	-0.314076	-4.63486179	2.17055050	5.70282406
13	8	-0.295425	-5.12785732	-0.41936391	3.89299198
14	8	-0.320676	-3.24650283	3.31223493	2.73276052
15	8	-0.312334	-5.85478147	2.10159245	2.01952148
1	8	-0.329415	-2.70703131	-2.34426078	-0.81600220
17	8	-0.307670	-2.60289789	0.35114025	1.30882563
18	8	-0.348749	-3.76069100	1.90139928	-1.08831444
19	8	-0.272986	-2.39764760	-4.47614013	3.60561004
20	8	-0.321849	-0.01956655	-6.18636940	5.00544529
7	8	-0.328293	-3.27483834	-4.31085846	6.83039074
22	8	-0.302763	-0.45914915	-3.34614129	1.97635877
23	8	-0.309801	-0.07562624	-6.58692122	1.40737696

8	-0.330573	-0.71615502	-3.31995814	6.89632676
8	-0.289886	-0.26648679	-4.88918238	-1.66433562
8	-0.327937	1.77261919	-3.58636883	-0.03457365
8	-0.338328	-0.94284377	-1.03146546	-1.83760484
9	-0.121458	-1.33022781	-9.45156900	8.36695600
6	0.048361	-1.33022781	-8.12156900	8.36695600
6	0.051394	-0.16975377	-7.45156900	8.36695600
9	-0.125101	-0.16975377	-6.12156900	8.36695600
9	-0.127995	-5.75462204	5.68222700	-2.04903700
6	0.049189	-4.59414800	7.68222700	-2.04903700
6	0.048838	-5.75462204	7.01222700	-2.04903700
9	-0.126806	-4.59414800	9.01222700	-2.04903700
1	0.087407	0.76555366	-7.99156900	8.36695600
1	0.077453	-3.65884056	7.14222700	-2.04903700
1	0.079324	-6.68992947	7.55222700	-2.04903700
1	0.076188	-2.26553525	-7.58156900	8.36695600
	8 8 8 9 6 6 9 9 6 6 9 1 1 1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Nəticələrin interpretasiyası. PVDF+ $(z_r o_2)_{0}$ nanokompozitin ionlaşma potensialının qiyməti: $I_p = -\varepsilon_{284} = 5.626206 \text{eV}$. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{285} - \varepsilon_{284} = 8.162517 \text{eV}.$ Bu isə nanokompozitin dielektrik material olduğunu göstərir. $\eta = \frac{1}{2} \left(\varepsilon_{ABMO} - \varepsilon_{YTMO} \right)$ Nanokompozitin möhkəmliyi =4.0812585a.v. düsturu ilə hesablanır. Burada $\varepsilon_{ABMO} = \varepsilon_{285} =$ 2.536311eV, $\varepsilon_{\gamma TMO} = \varepsilon_{284} = -5.626206$ eV. $\eta > 1eV$ olduğundan PVDF+ (zro₂)_a nanokompoziti möhkəm material hesab olunur. işarəli olduğuna $PVDF + (z_ro_2)_n$ \mathcal{E}_{ABMO} müsbət görə nanokompoziti nuklefildir. Nanokompozitin stabilliyi

 $\Delta E(PVDF + (ZrO_2)_9) = E_{PVDF + (ZrO_2)_9} - 4.5 \cdot E_{Zr_2} - 9E_{O_2} - 2E_{C_2} - 2E_{H_2} - 2E_{F_2}$

düsturu ilə hesablanır. $E_{PVDF+ZrO_2}$ -PVDF+ $(zrO_2)_9$ nanokompozitinin, E_{Zr_2} -Zr2-nin, E_{O_2} -O2-nin, E_{C_2} -C2-nin, E_{H_2} -H2-nin və E_{F_2} -F2-nin tam enerjisidir. $E_{PVDF+(ZrO_2)_9} = -33420.315552295$ a.v., $E_{Zr_2} = -7009.498508$ a.v., $E_{O_3} = -147.0186422$ a.v., $E_{C_3} = -74.31543142$ a.v.,

 $E_{H_2} = -1.111298185$ a.v., $E_{F_2} = -195.9593201$ a.v. olduğundan $\Delta E(PVDF + (ZrO_2)_9) = -11.63238688$ a.v. $\Delta E(PVDF + (ZrO_2)_9) < 0$ olduğundan PVDF+ (*zrO*₂)₉ nanokompoziti stabildir və şüalandıracağı fotonun dalğa uzunluğu $\lambda = 152$ nm-dir.

Nəticə. Sirkonim dioksid nanohissəciyi və onun PP+ $(zro_2)_9$, PVDF+ (zro2), nanokompozisiyalarının nəzəri vizual modelləri qurulmuşdur. Bu modellər əsasında XFR metodu ilə kompüterdə hesablamalar aparılmışdır. Sirkonim dioksid nanokompozisiyalarının nanohissəcivi və onun orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri, nanohissəciyə və onun nanokompozisiyalarına daxil yükləri hesablanmışdır[15]. olan atomların effektiv Hesablamaların nəticələri göstərir ki, sirkonim dioksid nanohissəciyi və onun PP+ $(z_{rO_2})_{o_1}$, PVDF+ $(z_{rO_2})_{o_2}$ nanokompozisiyaları möhkəm, nuklefil və stabil dielektrik materiallardır

27. Qızıl sulfid $(Au_2S)_{22}$ nanohissəciyi və onun $(Au_2S)_{22}$ +PP, $(Au_2S)_{22}$ +PVDF nanokompozisiyalarinin modelləşdirilməsi və tədqiqi

Qızıl sulfid Au₂S nanohissəcikləri öz xassələrinə görə geniş tətbiq sahələrinə malikdir [27]. Bu nanohissəcik rəngləyici maddələrin, elektron sxemlərin və s. hazırlanmasında geniş istifadə oluna bilər. Buna görə də $(Au_2S)_{22}$ nanohissəciyinin (Şəkil 27.2) və onun $(Au_2S)_{22} + PP$, $(Au_2S)_{22} + PVDF$ nanokompozisiyalarının (Şəkil 27.3) elektron quruluşunun kvantmexaniki metodlarla öyrənilməsinin böyük əhəmiyyəti vardır. Məlumdur ki, nanohissəciklərin quruluşu və xassələri

nanohissəcikdəki atomların sayı və ölçüsü ilə müəyyən olunur. Au və S atomlarının kovalent radiuslarının qiymətlərini bilərək ($r_{Au}=0,134$ nm, rs=0,102nm) iki Au və bir S atomlarınının təqribi olaraq yerləşdiyi kürənin radiusunu Şəkil 1.-dən istifadə edərək təyin etmək olar. ΔACD - də r = AC/2.

Bu düzbucaqlı üçbucaqdan $AC = \sqrt{AD^2 + CD^2}$; AD = $4r_{Au}$ və $CD \approx 2(r_{Au} + r_S)$ götürümək olar. Beləliklə, AC= 0,71419885nm. r = 0,35709943nm alarıq. Nanohissəcikdəki atomların sayı təqribi olaraq $n = \left(\frac{R}{r}\right)^3$ düsturu ilə hesablana kürə formalı hesab olan $(Au_2S)_{n}$ bilər Burada R nanohissəciyinin radiusu, r isə kürə formalı hesab olunan Au₂S-nin radiusudur. Adətən $(Au_2S)_n$ nanohissəciyinin radiusu $R \approx 1$ -2nm tərtibində olur. R=1nm olduşda n=22 alınır. Onda 66 atomdan ibarət $(Au_2S)_{22}$ nanohissəciyinin nəzəri modelini qurmaq olar(Şəkil 26.2). $(Au_2S)_{22} + PP$ və $(Au_2S)_{22} + PVDF$ nanokompozisiyalarının nəzəri modelləri isə Şəkil 26.3-də verilmişdir. Qızıl sulfid (Au₂S)₂₂ nanohissəciyinin və onun $(Au_2S)_{22}$ +PP, $(Au_2S)_{22}$ + PVDF nanokompozisiyalarının elektron guruluşu və xassələri Genişlənmiş Hükkel metodu ilə öyrənilmişdir. Məlumdur ki, Genişlənmiş Hükkel metodu molekulyar orbitallar (MO) metodunun sadə yarımempirik variantıdır. MO metodunda hesab olunur ki, molekulda hər bir elektron molekuldakı nüvələrin və digər elektronların yaratdığı müəyyən effektiv sahədə başqa elektronlardan asılı olmadan hərəkət edir. Molekulda elektronun halı molekulyar orbital adlanan birelektronlu dalğa funksiyası ilə təsvir olunur. Onlar çoxmərkəzli funksiyalardır. Belə ki, onların ifadəsinə elektronun müxtəlif atom nüvələrindən olan məsafələri daxil olur. Molekulyar orbitalların axtarılmasının müxtəlif variantları mövcuddur. Onlardan biri də U_i molekulyar orbitallarını molekula daxil olan atomların atom orbitallarının xətti kombinasiyası şəklində axtarılması metodudur (MO LCAO metodu) [1, 2, 3]:

$$U_i = \sum_{q=1}^m C_{qi} \chi_q \tag{27.1}$$

Burada C_{ai} - naməlum əmsallar, χ_q - isə bazis funksiyaları kimi secilon atom orbitallarıdır. Molekulların elektron gurulusunun kvantmexaniki hesablamalarında adətən valent elektronların atom orbitallarını nəzərə almaqla kifayətlənirlər. $(Au_2S)_{22}$ nanohissəciyinin molekulyar orbitallarını gurmag üçün gızıl və kükürd atomlarının hər birindən 9 olmaqla 66*9 = 594 atom orbitallarından istifadə olunmuşdur. Hesablamalar zamanı γ_{α} atom orbitalları olaraq Au atomlarından 6s-, 6px-, 6py-, 6pz-, $5d_z$ 2-, $5d_{xz}$ -, $5d_{yz}$, $5d_x^2$ -, $5d_{xy}$ - və S atomlarından isə 3s-, $3p_x$ -, $3p_y$ -, $3p_z$ -, $3d_z$ -, $3d_{xz}$ -, $3d_{yz}$, $3d_x^2$ -, $3d_{xy}$ -, atom orbitallarından istifadə edilmişdir. (27.1) düsturu əsasında molekulyar orbital gurulmuşdur. Hər qızıl atomundan 11 və hər kükürd atomundan 6 elektron olmaqla 44*11+22*6=616sayda valent elektronu ən aşağı enerjili 308 enerji səviyyəsini doldurur. C və F atomlarının hər birindən dörd (2s-, 2px-, 2py-, 2pz) və H atomlarından hər birindən bir (1s-) valent atom orbitalından istifadə olunmuşdur. (Au2S)22 nanohissəciyinin və onun $(Au_2S)_{22}$ +PP, $(Au_2S)_{22}$ +PVDF nanokompozisiyalarının tam enerjisini, ionlasma potensialının giymətlərini hesablamaq, mexaniki, elektrik, maqnit xassələrini və s. tədqiq etmək olar.

Şəkil 27.3. $(Au_2S)_{22}$ +PP və $(Au_2S)_{22}$ +PVDF nanokompozitlərinin vizual modelləri

$(Au_2S)_{22}$ nanohissəciyi üçün kompüter hesablamaları və alinmış nəticələrin interpretasiyası

Hesablamalar nəticəsində $(Au_2S)_{22}$ nanohissəciyin orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri və nanohissəciyinə daxi olan atomların effektiv yükləri(Cədvəl 27.1.) və s. hesablanmışdır. $(Au_2S)_{22}$ nanohissəciyinin 616 elektronu ən aşağı enerji səviyyəsindən başlayaraq iki-iki səviyyələrdə yerləşdirilir. Elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisi: $\varepsilon_{YTMO} = \varepsilon_{308} = -11.540509$ eV. Ən aşağı boş molekulyar orbitalın enerjisi: $\varepsilon_{ABMO} = \varepsilon_{309} = -10.324232$ eV. Nanohissəciyin ionlaşma potensialı: $I_p = -\varepsilon_{YTMO} = 11.540509$ eV. Qadağan olunmuş zonanın qiyməti $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 1.216277$ eV fərqi ilə müəyyən olunur. Bu isə $(Au_2S)_{22}$ nanohissəciyinin keçirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 0.6081385$ a.v. və $\eta < 1eV$ olduğundan $(Au_2S)_{22}$ nanohissəciyi yumşaq material hesab olunur. Ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna görə $(Au_2S)_{22}$ nanohissəciyinin elektrofildir. $(Au_2S)_{22}$ nanohissəciyinin stabilliyi

$$\Delta E((Au_2S)_{22}) = E_{(Au_2S)_{22}} - 22 \cdot E_{Au_2} - 11 \cdot E_{S_2}$$

düsturu ilə hesablanır. $\Delta E((Au_2S)_{22}) > 0$ olduqda material qeyri stabil, $\Delta E((Au_2S)_{22}) < 0$ olduqda material stabil hesab olunur. $E_{(Au_2S)_{22}} - (Au_2S)_{22}$ nanohissəciyinin, E_{Au_2} -Au₂ və E_{S_2} -S₂ molekulunun tam enerjisidir. $E_{(Au_2S)_{22}} = -344.4884046a.v.$, E_{Au_2} =-9.996839837a.v. və $E_{S_2} = -7.156810571a.v.$ olduğundan $\Delta E((Au_2S)_{22}) = -45.83301192a.v.$ və $\Delta E((Au_2S)_{22}) < 0$ olduğundan $(Au_2S)_{22}$ nanohissəciyi stabildir.

(Au₂S)₂₂+PP nanokompoziti üçün kompüter hesablamaları və alinmış nəticələrin interpretasiyası

 $(Au_2S)_{22}$ +PP nanokompozitinin nəzəri modeli kimi iki C₃H₆ polimeri arasında yerləşdirilmiş $(Au_2S)_{22}$ nanohissəciyinə baxılmışdır. Hər C atomundan 4, H atomundan bir, hər qızıl atomundan 11 və hər kükürd atomundan 6 elektron olmaqla nanokompozitin 652 sayda elektronu ən aşağı enerjili 326 enerji səviyyəsini doldurur. Hesablamalar nəticəsində $(Au_2S)_{22}$ +PP nanokompozitinin orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri və nanokompozitə daxi olan atomların effektiv yükləri(Cədvəl 27.2.) və s. hesablanmışdır. Elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisi: $\varepsilon_{YTMO} = \varepsilon_{326} = -11.449077$ eV. Θ n aşağı boş molekulyar orbitalın enerjisi: $\varepsilon_{ABMO} = \varepsilon_{327} = -10.436444$ eV. Nanokompozitin ionlaşma potensialı: $I_p = -\varepsilon_{YTMO} = 11.449077$ eV. Qadağan olunmuş zonanın qiyməti $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 1.012633$ eV fərqi ilə müəyyən olunur. Bu isə $(Au_2S)_{22}$ +PP nanokompoziti keçirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2}(\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 0.5063165$ a.v. və $\eta < 1eV$ olduğundan $(Au_2S)_{22}$ +PP nanokompoziti yumşaq material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_{327} = -10.436444$ eV ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna görə $(Au_2S)_{22}$ +PP nanokompoziti sumşaq material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_{327} = -10.436444$ eV ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna görə $(Au_2S)_{22}$ +PP nanokompoziti sumşaq material hesab olunur. $\varepsilon_{ABMO} = \varepsilon_{327} = -10.436444$ eV ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna görə $(Au_2S)_{22}$ +PP nanokompoziti elektrofildir. $(Au_2S)_{22}$ +PP nanokompoziti nin stabilliyi

$$\Delta E ((Au_2S)_{22} + PP) = E_{(Au_2S)_{22}+PP} - 22 \cdot E_{Au_2} - 11 \cdot E_{S_2} - 3 \cdot E_{C_2} - 6 \cdot E_{H_2}$$

düsturu ilə hesablanır. $E_{(Au_2S)_{22}+PP}$ - (Au₂S)₂₂+PP nanokompozitinin, E_{Au_2} - Au₂-nin, E_{S_2} - S₂-nin, E_{C_2} - C₂-nin, E_{H_2} - H₂-nin tam enerjisidir. $E_{(Au_2S)_{22}+PP}$ =-367.3541543a.v., E_{Au_2} =-9.996839837a.v. və E_{S_2} =-7.156810571a.v., E_{C_2} =-5.015905604a.v., E_{H_2} =-1.291132619a.v. olduğundan $\Delta E((Au_2S)_{22} + PP)$ =-53.65104481a.v. $\Delta E((Au_2S)_{22} + PP) < 0$ olduğundan $(Au_2S)_{22}$ + PP nanokompoziti stabildir.

(Au₂S)₂₂ +PVDF nanokompoziti üçün kompüter hesablamaları və alinmış nəticələrin interpretasiyası
(Au₂S)₂₂+PVDF nanokompozitinin nəzəri modeli kimi iki $C_2H_2F_2$ polimeri arasında yerləşdirilmiş $(Au_2S)_{22}$ nanohissəciyinə baxılmışdır. Hər C atomundan 4, F atomlarından 7, H atomundan bir, hər qızıl atomundan 11 və kükürd atomundan 6 valent elektronu olmagla hər nanokompozitin 664 sayda elektronu ən aşağı enerjili 332 enerji səviyyəsini doldurur. Hesablamalar nəticəsində $(Au_2S)_{22}$ nanokompozitinin orbital enerjiləri, ionlaşma +PVDF elektorn enerjisinin tam potensialı, qiymətləri və nanokompozitə daxi olan atomların effektiv yükləri(Cədvəl 27.3.) və s. tapılmışdır. Elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisi: $\varepsilon_{yTMO} = \varepsilon_{332} = -$ 11.449075eV. Ən aşağı boş molekulyar orbitalın enerjisi: $\varepsilon_{ABMO} = \varepsilon_{333} = -10.43641$ eV. $(Au_2S)_{22} + PVDF$ nanokompozitinin ionlaşma potensialının qiyməti: I_p=- $\varepsilon_{_{YTMO}}$ =11.449075eV. Qadağan olunmuş zonanın qiyməti: $\mathcal{E}_{ABMO} - \mathcal{E}_{YTMO} = 1.012665 \text{eV}$ fərqi ilə müəyyən olunur. Bu isə $(Au_2S)_{22}$ +PVDF nanokompozitinin keçirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 0.5063325$ a.v. $\eta < 1eV$ olduğundan $(Au_2S)_{22}$ +PVDF nanokompoziti yumşaq material hesab olunur. Ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna görə $(Au_2S)_{22}$ +PVDF nanokompozitinin elektrofildir. $(Au_2S)_{22}$ +PVDF nanokompozitinin stabilliyi

$$\Delta E((Au_2S)_{22} + PVDF) = E_{(Au_2S)_{22} + PVDF} - 22 \cdot E_{Au_2} - 11 \cdot E_{S_2} - 3 \cdot E_{C_2} - 6 \cdot E_{H_2} - 2E_{F_2}$$

düsturu ilə hesablanır. Burada $E_{(Au_2S)_{22}+PVDF}$ - $(Au_2S)_{22}+PVDF$ nanokompozitinin, E_{Au_2} - Au2-nin, E_{S_2} - S2-nin, E_{C_2} - C2-nin,

 E_{H_2} - H₂-nin və E_{F_2} - F₂-nin tam enerjisidir. $E_{(Au_2S)_{22}+PVDF} = -$ 367.3541543a.v., E_{Au_2} = -9.996839837a.v. və E_{S_2} =-7.156810571a.v., E_{C_2} =-5.015905604a.v., E_{H_2} =-1.291132619a.v. və E_{F_2} =-12.57307174a.v. olduğundan $\Delta E((Au_2S)_{22} + PVDF) = -45.90495506a.v. \quad \Delta E((Au_2S)_{22} + PVDF) < 0$ olduğundan $(Au_2S)_{22}$ + PVDF nanokompoziti stabildir. Nəticə. $(Au_2S)_{22}$ nanohissəciyi və onun $(Au_2S)_{22}$ +PP, $(Au_2S)_{22}$ +PVDF nanokompozisiyalarının elektron quruluşu Genişlənmiş Hükkel metodu ilə öyrənilmişdir. Nanohissəcivin $(Au_2S)_{22}$ +PP, $(Au_2S)_{22}$ +PVDF və onun nanokompozisivalarının orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri, nanohissəciyə və onun $(Au_2S)_{22}$ +PP, $(Au_2S)_{22}$ +PVDF nanokompozisiyalarınına daxi olan atomların effektiv yükləri hesablanmışdır. Hesablamaların nəticələri göstərir ki, $(Au_2S)_{22}$ nanohissəciyi və onun $(Au_2S)_{22}$ +PP, (Au₂S)₂₂+PVDF nanokompozisiyaları yumşaq, elektrofil və stabil kecirici materiallardır. Bu materiallar müxtəlif elektron sxemlərin hazırlanmasında istifadə oluna bilər.

Z	Yükü Koordinatları(Anqstremlə)					
Atomu		Х	у	Z		
1 79	0.409826	8.61590	6.12927	-1.75731		
2 79	0.419974	6.64769	9.87691	-1.50029		
3 79	0.401680	4.15342	12.38713	-4.05704		
5 79	0.404961	4.86187	10.54514	-5.59650		
6 79	0.390752	1.18953	12.00498	-7.52999		
8 79	0.405386	0.53089	10.38898	-5.72911		
9 79	0.404957	10.19893	-0.51021	-2.57123		
11 79	0.409191	11.77711	-3.79827	0.14261		
12 79	0.413948	9.71501	-4.29797	-1.30567		
14 79	0.422302	8.91456	-4.17194	3.10779		
16 79	0.418854	6.95325	-7.39686	5.93042		

CƏDVƏL 27.1. ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI. E(Au₂S)₂₂ =-344.488404614a.v.

17 79	0.426013	8.09430	-5.44691	7.00032	
19 79	0.417536	3.88386	-5.73089	8.34874	
20 79	0.401539	0.23121	-7.80484	9.71706	
22 79	0.403068	1.33071	-9.25274	8.00290	
23 79	0.390923	-2.85882	-10.50990	7.57434	
24 79	0.407709	-6.62567	-10.00835	5.24321	
26 79	0.412325	-4.90706	-10.35899	3.45880	
27 79	0.409603	-9.14393	-9.41866	1.67078	
29 79	0.396780	-11.15741	-5.36183	0.65268	
30 79	0.420892	-14.22817	1.64581	1.51907	
31 79	0.440065	-12.52581	2.30624	3.21086	
32 79	0.451292	-11.57416	3.97029	-0.72344	
33 79	0.406621	-9.85055	7.25849	-6.92518	
34 79	0.402968	11.82953	3.12600	-0.94060	
36 79	0.409757	11.56564	3.54187	-3.39032	
39 79	0.412562	-2.92677	10.77831	-8.59859	
41 79	0.424423	-1.63630	8.69686	-9.05389	
42 79	0.430464	-6.39915	8.72004	-9.55867	
43 79	0.428648	-5.43326	7.04981	-7.98497	
45 79	0.414438	-8.43759	8.82208	-5.58284	
47 79	0.413782	-11.32995	7.90807	-2.46462	
48 79	0.444277	-10.38058	5.64809	-3.08702	
50 79	0.405712	-12.89795	5.85592	0.33153	
53 79	0.403070	-11.34868	-1.71920	2.86876	
55 79	0.413662	-13.82057	-2.27976	2.88080	
56 79	0.385064	-11.50696	-6.10014	3.09014	
58 79	0.403257	-7.61216	-7.44979	1.87840	
60 79	0.401650	-2.66284	-8.28154	6.44472	
61 79	0.419530	4.90638	-7.52850	9.73417	
62 79	0.404628	9.06674	-6.58847	2.45486	
63 79	0.407267	12.73855	-0.87865	-2.65480	
64 79	0.421911	8.34068	10.37908	-3.26224	
66 79	0.399928	10.64428	7.42555	-1.07840	
15 16	-0.889668	8.33690	-5.92308	4.64823	
46 16	-0.836259	-10.18015	7.53464	-4.55795	
4 16	-0.835868	6.03485	10.97613	-3.54859	
7 16	-0.790987	2.66530	11.48148	-5.71223	
49 16	-0.901847	-10.83405	6.23080	-0.83184	
25 16	-0.802950	-4.27649	-9.90871	5.73306	
51 16	-0.811611	-12.90388	3.62758	1.23597	
52 16	-0.877324	-13.04245	-0.00779	2.79451	
35 16	-0.804972	11.74427	1.31721	-2.51966	
54 16	-0.788698	-12.05299	-3.88241	2.34616	
18 16	-0.816058	6.13962	-6.45123	7.97148	
37 16	-0.808205	10.79198	5.12802	-1.75731	

57 16	-0.776310	-9.97316	-7.15252	1.63640	
38 16	-0.808569	-0.67646	10.51679	-7.79582	
59 16	-0.798170	-1.05201	-9.00041	8.06790	
13 16	-0.764579	9.83554	-4.84610	0.99362	
40 16	-0.874437	-4.04199	8.69906	-9.04611	
28 16	-0.822458	-7.09570	-9.53236	2.93840	
10 16	-0.852658	11.22638	-2.48585	-1.79458	
21 16	-0.822636	2.56250	-7.55717	9.17952	
65 16	-0.830631	8.61590	8.52551	-1.75731	
44 16	-0.818299	-7.65423	7.90852	-7.67249	

CƏDVƏL 27.2. ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI E(Au₂S)_{22+PP} =-367.3541543a.v.

Z Atomu		Yükü	Koordinatları(Anqstremlə)		
			Х	У	Z
1	79	0.528439	6.62704	6.68067	2.91626
2	79	0.423197	4.82312	10.86696	2.66876
3	79	0.501323	3.99113	13.70319	-0.45933
5	79	0.476995	4.56270	11.90028	-1.78621
6	79	0.492645	0.64342	12.38734	-3.65608
8	79	0.510462	0.47616	10.84999	-2.65864
9	79	0.502803	9.97653	1.14952	1.75268
11	79	0.504557	10.96222	-1.76507	5.39218
12	79	0.402876	11.14686	-2.77344	3.30584
14	79	0.474030	7.40111	-4.96075	4.70362
16	79	0.479859	5.88986	-7.73935	7.95559
17	79	0.524566	6.14992	-5.92779	9.16843
19	79	0.452115	1.71862	-6.50398	7.77758
20	79	0.469825	-1.39655	-9.67229	7.95597
22	79	0.534393	-0.14723	-10.81196	6.34849
23	79	0.596782	-4.27164	-9.65775	4.22085
24	79	0.482982	-6.46312	-11.56857	1.27490
26	79	0.482245	-4.71158	-11.82557	0.67237
27	79	0.451207	-6.61160	-10.08862	-3.30859
29	79	0.557640	-7.90192	-5.42304	-4.34578
30	79	0.666282	-13.50219	0.43766	-3.57876
31	79	0.552806	-13.97366	0.13278	-1.61776
32	79	0.433557	-10.46447	2.85320	-4.33229
33	79	0.485592	-7.75849	8.09304	-9.00825
34	79	0.528661	10.81905	4.63889	4.55729
36	79	0.478674	11.23267	5.85175	2.58250
39	79	0.418454	-0.96538	11.76055	-7.07611
41	79	0.512994	0.56648	10.46242	-8.05931
42	79	0.462511	-3.47910	9.23473	-9.50242

43	79	0.516376	-3.33600	7.65741	-7.85938
45	79	0.457340	-7.23140	9.08990	-6.67852
47	79	0.476264	-10.86428	6.57296	-5.56584
48	79	0.520374	-9.16196	4.82482	-5.76967
50	79	0.372509	-12.52536	4.23083	-3.63626
53	79	0.501328	-11.53530	-4.06133	-2.31149
55	79	0.529576	-13.04277	-4.36807	-3.69964
56	79	0.421103	-9.51926	-7.18373	-4.14841
58	79	0.519240	-6.44543	-7.94378	-2.20317
60	79	0.567405	-2.84393	-8.07321	3.52875
61	79	0.435976	1.83274	-7.98632	9.87347
62	79	0.479834	9.54246	-5.87808	5.48243
63	79	0.411797	12.36881	1.24249	2.55454
64	79	0.506776	7.20793	11.52834	2.15021
66	79	0.516951	7.14131	7.69298	4.36135
15	16	-1.105509	7.13747	-5.92244	6.84548
46	16	-1.056614	-8.64410	7.12796	-6.62369
4	16	-0.917124	4.96806	11.79237	0.64552
7	16	-1.025014	2.61474	12.14030	-2.41004
49	16	-1.032444	-10.26483	5.16440	-3.56565
25	16	-1.050715	-4.42436	-10.22700	2.59517
51	16	-0.832564	-12.30842	1.71230	-3.33509
52	16	-1.165522	-12.80501	-1.97428	-3.04614
35	16	-0.907939	11.14435	3.26767	2.75170
54	16	-0.886107	-10.32292	-5.23867	-3.68717
18	16	-0.984942	3.80768	-6.95179	8.40375
37	16	-1.247967	9.00526	6.36946	2.91626
57	16	-0.896453	-8.34747	-8.34635	-2.80079
38	16	-1.055922	0.36263	11.48789	-5.43884
59	16	-1.119534	-1.96723	-9.77849	5.39973
13	16	-0.817723	9.61960	-3.91513	4.78175
40	16	-0.925391	-1.79617	9.77369	-8.21480
28	16	-1.184739	-6.05896	-10.50294	-0.98183
10	16	-0.819806	10.85887	-0.43847	3.30713
21	16	-0.895136	0.55499	-8.61433	7.99401
65	16	-0.865001	6.62704	9.37116	2.91626
44	16	-0.829152	-5.60292	8.53556	-8.09762
67	6	-0.068798	3.63382	17.86510	-9.91045
68	6	0.019324	3.63382	19.38510	-9.91045
69	6	-0.182749	2.47335	20.05510	-9.91045
76	6	-0.068798	1.86247 -	17.72474	10.10078
77	6	0.019324	1.86247 -	16.20474	10.10078
78	6	-0.182749	0.70200 -	15.53474	10.10078
73	1	0.025078	4.66149	17.50177	-9.91045
74	1	0.036013	3.12000	17.50177	-9.02046

75	1	0.036013	3.11999	17.50176	-10.80043	
70	1	0.047806	1.53804	19.51510	-9.91045	
71	1	0.047190	2.47335	21.13510	-9.91045	
72	1	0.040123	4.56913	19.92510	-9.91045	
79	1	0.040123	2.79778	-15.66474	10.10078	
80	1	0.047190	0.70200	-14.45474	10.10078	
81	1	0.047806	-0.23331	-16.07474	10.10078	
82	1	0.025078	2.89014	-18.08807	10.10078	
83	1	0.036013	1.34865	-18.08807	10.99076	
84	1	0.036013	1.34864	-18.08808	9.21080	

CƏDVƏL 27.3. ATOMLARIN EFFEKTİV YÜKLƏRI VƏ KOORDINATLARI $E(Au_2S)_{22+PVDF} = -382.3205677a.v.$

	/					
Z	Yükü	Ко	Koordinatları(Anqstremlə)			
Atomu		Х	у	Z		
1 79	0.528439	6.62704	6.68067	2.91626		
2 79	0.423196	4.82312	10.86696	2.66876		
3 79	0.501323	3.99113	13.70319	-0.45933		
5 79	0.476994	4.56270	11.90028	-1.78621		
6 79	0.492634	0.64342	12.38734	-3.65608		
8 79	0.510460	0.47616	10.84999	-2.65864		
9 79	0.502803	9.97653	1.14952	1.75268		
11 79	0.504557	10.96222	-1.76507	5.39218		
12 79	0.402876	11.14686	-2.77344	3.30584		
14 79	0.474030	7.40111	-4.96075	4.70362		
16 79	0.479858	5.88986	-7.73935	7.95559		
17 79	0.524565	6.14992	-5.92779	9.16843		
19 79	0.452109	1.71862	-6.50398	7.77758		
20 79	0.469811	-1.39655	-9.67229	7.95597		
22 79	0.534356	-0.14723	-10.81196	6.34849		
23 79	0.596778	-4.27164	-9.65775	4.22085		
24 79	0.482981	-6.46312	-11.56857	1.27490		
26 79	0.482243	-4.71158	-11.82557	0.67237		
27 79	0.451206	-6.61160	-10.08862	-3.30859		
29 79	0.557640	-7.90192	-5.42304	-4.34578		
30 79	0.666282	-13.50219	0.43766	-3.57876		
31 79	0.552806	-13.97366	0.13278	-1.61776		
32 79	0.433557	-10.46447	2.85320	-4.33229		
33 79	0.485592	-7.75849	8.09304	-9.00825		
34 79	0.528661	10.81905	4.63889	4.55729		
36 79	0.478673	11.23267	5.85175	2.58250		
39 79	0.418514	-0.96538	11.76055	-7.07611		
41 79	0.512985	0.56648	10.46242	-8.05931		
42 79	0.462503	-3.47910	9.23473	-9.50242		

43 79	0.516365	-3.33600	7.65741	-7.85938	
45 79	0.457339	-7.23140	9.08990	-6.67852	
47 79	0.476264	-10.86428	6.57296	-5.56584	
48 79	0.520374	-9.16196	4.82482	-5.76967	
50 79	0.372509	-12.52536	4.23083	-3.63626	
53 79	0.501328	-11.53530	-4.06133	-2.31149	
55 79	0.529576	-13.04277	-4.36807	-3.69964	
56 79	0.421103	-9.51926	-7.18373	-4.14841	
58 79	0.519239	-6.44543	-7.94378	-2.20317	
60 79	0.567402	-2.84393	-8.07321	3.52875	
61 79	0.435973	1.83274	-7.98632	9.87347	
62 79	0.479834	9.54246	-5.87808	5.48243	
63 79	0.411797	12.36881	1.24249	2.55454	
64 79	0.506776	7.20793	11.52834	2.15021	
66 79	0.516951	7.14131	7.69298	4.36135	
15 16	-1.105511	7.13747	-5.92244	6.84548	
46 16	-1.056614	-8.64410	7.12796	-6.62369	
4 16	-0.917124	4.96806	11.79237	0.64552	
7 16	-1.025017	2.61474	12.14030	-2.41004	
49 16	-1.032444	-10.26483	5.16440	-3.56565	
25 16	-1.050721	-4.42436	-10.22700	2.59517	
51 16	-0.832564	-12.30842	1.71230	-3.33509	
52 16	-1.165522	-12.80501	-1.97428	-3.04614	
35 16	-0.907939	11.14436	3.26767	2.75170	
54 16	-0.886108	-10.32292	-5.23867	-3.68717	
18 16	-0.984945	3.80768	-6.95179	8.40375	
37 16	-1.247967	9.00526	6.36946	2.91626	
57 16	-0.896454	-8.34747	-8.34635	-2.80079	
38 16	-1.055978	0.36263	11.48789	-5.43884	
59 16	-1.119566	-1.96723	-9.77849	5.39973	
13 16	-0.817723	9.61960	-3.91513	4.78175	
40 16	-0.925451	-1.79617	9.77369	-8.21480	
28 16	-1.184743	-6.05896	-10.50294	-0.98183	
10 16	-0.819806	10.85887	-0.43847	3.30713	
21 16	-0.895169	0.55499	-8.61433	7.99401	
65 16	-0.865001	6.62704	9.37116	2.91626	
44 16	-0.829155	-5.60292	8.53556	-8.09762	
68 9	-0.597571	2.78566	-15.30978	7.88415	
69 6	0.551183	0.47337	-15.31478	7.88415	
70 6	0.551237	1.63385	-14.64478	7.88415	
71 9	-0.597584	-0.67844	-14.64978	7.88415	
74 9	-0.597588	0.78134	15.12942	-9.84565	
75 6	0.551172	-1.53095	15.12442	-9.84565	
76 6	0.551195	-0.37048	15.79442	-9.84565	
77 9	-0.597577	-2.68276	15.78942	-9.84565	

72 1	0.046434	1.63385	-13.56478	7.88415	
73 1	0.046458	-1.53095	14.04442	-9.84565	
67 1	0.046452	0.47337	-16.39478	7.88415	
78 1	0.046447	-0.37048	16.87442	-9.84565	

28. Plumbum sulfid $(PbS)_8$ nanohissəciyi və onun $(PbS)_8$ +PP, $(PbS)_8$ +PVDF nanokompozisiyalarinin modelləşdirilməsi və tədqiqi

Plumbum sulfid (PbS)₈ nanohissəcikləri öz xassələrinə görə genis tətbiq sahələrinə malikdir[35]. Bu nanohissəciklər ölçən sensorların, elektron rütübəti sxemlərin və s. hazırlanmasında geniş istifadə oluna bilər. Buna görə də (PbS)₈ nanohissəciyinin (Şəkil 28.3.) elektron quruluşunun kvantmexaniki metodlarla öyrənilməsinin böyük əhəmiyyəti vardır. Məlumdur ki, nanohissəciklərin quruluşu və xassələri nanohissəcikdə atomların sayı və ölçüsü ilə müəyyən olunur. Pb və S atomlarının kovalent radiuslarının uzunluqlarını bilərək (r_{Pb}=0,147nm, r_S=0,102nm) Pb və S atomlarınının təqribi olaraq yerləşdiyi kürənin radiusunu Şəkil 28.1.-dən istifadə edərək təyin etmək olar. rh = rPb+rs. Beləliklə, rh=0,249nm alarıq. Nanohissəcikdəki (Pb və S) atomların sayı təqribi olaraq

 $n = \frac{R^3 - rb^3}{rh^3}$ düsturu ilə hesablana bilər (Şəkil 28.2.). Burada

R kürə formalı olan (PbS)_n nanohissəciyinin radiusu, rh isə kürə formalı hesab olunan PbS-nin radiusu və rb = R – 2rh. Adətən (PbS)_n nanohissəciyinin radiusu $R \approx 2$ nm tərtibində olur. R = 1nm, rh = 0,249nm və rb = 0,002nm olduqda n = 8 alınır. Onda 16 atomdan ibarət (PbS)₈ nanohissəciyinin nəzəri modelini qurmaq olar(Şəkil 28.3.).

(PbS)₈ nanohissəciyinin Plumbum sulfid elektron quruluşu və xassələri Genişlənmiş Hükkel metodu ilə öyrənilmişdir[1, 2, 3]. Kvantmexaniki hesablamalar zamanı adətən valent elektronların atom orbitallarını nəzərə almaqla kifayətlənirlər. (PbS), nanohissəciyinin molekulyar orbitallarını qurmaq ücün plumbum 4 və kükürd atomlarının hər birindən 9 olmaqla 104 atom orbitallarından istifadə olunmusdur. Hesablamalar γα atom orbitalları zamanı olaraq Ph atomlarından 6s-, 6px-, 6py-, 6pz-, və S atomlarından isə 3s-, $3p_x$ -, $3p_y$ -, $3p_z$ -, $3d_z$ 2-, $3d_{xz}$ -, $3d_{yz}$, $3d_x^2$ -, $3d_{xy}$ -, atom orbitallarından istifadə edilmişdir. (28.1) düsturu əsasında molekulyar orbital gurulmuşdur. Hər Pb atomundan 4 və hər kükürd atomundan 8 elektron olmaqla 80 sayda valent elektronu ən aşağı enerjili 40 enerji səviyyəsini doldurur. C və F atomlarının hər birindən dörd (2s-, 2px-, 2py-, 2pz) və H atomlarından hər birindən bir (1s-) valent atom orbitalından istifadə olunmuşdur. $(PbS)_8$ nanohissəciyinin və onun $(PbS)_8$ +PP, (PbS)₈ +PVDF nanokompozisiyalarının tam enerjisini, ionlaşma potensialının qiymətlərini hesablamaq, mexaniki, elektrik, maqnit xassələrini və s. tədqiq etmək olar.

Şəkil 28.3. (PbS)₈ nanohissəciyinin vizual modelləri

$(PbS)_8$ nanohissəciyi üçün kompüter hesablamaları və alinmış nəticələrin interpretasiyası

Hesablamalar nəticəsində $(PbS)_8$ nanohissəciyin orbital enerjiləri, ionlasma potensialı, tam elektorn enerjisinin qiymətləri və nanohissəciyinə daxi olan atomların effektiv 28.5.) s. hesablanmışdır. (PbS). vükləri(Səkil və nanohissəcivinin 80 elektronu ən asağı enerji səviyyəsindən iki-iki səviyyələrdə yerləşdirilir. Elektronlar başlayaraq tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisi: $\varepsilon_{YTMO} = \varepsilon_{40} = -9.798899 \text{eV}$. Ən aşağı boş molekulyar orbitalın enerjisi: $\varepsilon_{ABMO} = \varepsilon_{41} = -9.672250$ eV. Nanohissəciyin ionlaşma potensiali: I_p = - ε_{YTMO} = 9.798899eV. Qadağan olunmuş zonanın qiyməti $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 0.126649$ eV fərqi ilə müəyyən olunur. Bu isə (PbS)₈ nanohissəciyinin keçirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 0.0633245$ a.v. və $\eta < 1eV$ olduğundan (PbS)₈ nanohissəciyi yumşaq material hesab olunur. Ən aşağı boş molekulyar orbitalın enerjisi mənfi isarəli olduğuna görə $(PbS)_8$ nanohissəciyinin elektrofildir. $(PbS)_8$ nanohissəciyinin stabilliyi

$$\Delta E((PbS)_8) = E_{(PbS)_8} - 4 \cdot E_{Pb_2} - 4 \cdot E_{S_2}$$

düsturu ilə hesablanır. $\Delta E((PbS)_8) > 0$ olduqda material qeyri stabil, $\Delta E((PbS)_8) < 0$ olduqda material stabil hesab olunur. $E_{(PbS)_8}$ - (PbS)_8 nanohissəciyinin, E_{Pb_2} -Pb₂ və E_{S_2} -S₂ molekulunun tam enerjisidir. $E_{(PbS)_8} = -44.989225455$ a.v., E_{Pb_2} = -3.639985028 a.v. və $E_{S_2} = -7.156810571$ a.v. olduğundan $\Delta E((PbS)_8) = -1.802043059$ a.v. və $\Delta E((PbS)_8) < 0$ olduğundan (PbS)₈ nanohissəciyi stabildir.

(PbS)₈+**PP** nanokompoziti üçün kompüter hesablamaları və alinmış nəticələrin interpretasiyası

 $(\mbox{PbS})_{\!\!8}\,\mbox{+}\mbox{PP}$ nanokompozitinin nəzəri modeli kimi iki C₃H₆ polimeri arasında yerləşdirilmiş (PbS)₈ nanohissəciyinə baxılmışdır. Hər C atomundan 4, H atomundan bir, hər Pb atomundan 4 və hər S atomundan 6 elektron olmaqla nanokompozitin 116 sayda elektronu ən aşağı enerjili 58 enerji səviyyəsini doldurur. Hesablamalar nəticəsində $(PbS)_8$ +PP nanokompozitinin orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri və nanokompozitə daxi olan atomların effektiv yükləri(Şəkil 28.5.) və s. hesablanmışdır. Elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisi: $\varepsilon_{YTMO} = \varepsilon_{58} = -9.475269 \text{eV}$. Ən aşağı boş molekulyar orbitalın enerjisi: $\varepsilon_{ABMO} = \varepsilon_{59} = -9.423323$ eV. Nanokompozitin ionlaşma potensialı: $I_p = -\varepsilon_{YTMO} = 9.475269 \text{eV}$. Qadağan olunmuş zonanın qiyməti $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 0.051946$ eV fərqi ilə müəyyən olunur. Bu isə (PbS)8 +PP nanokompoziti keçirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$

düsturu ilə hesablana bilər. $\eta = 0.025973$ a.v. və $\eta < 1eV$ olduğundan (PbS)₈+PP nanokompoziti yumşaq material hesab olunur. Ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna görə (PbS)₈+PP nanokompoziti elektrofildir. (PbS)₈ +PP nanokompozitinin stabilliyi

 $\Delta E((PbS)_8 + PP) = E_{(PbS)_8+PP} - 4 \cdot E_{Pb_2} - 4 \cdot E_{S_2} - 3^* E_{C_2} - 6^* E_{H_2}$ düsturu ilə hesablanır. $E(PbS)_8 + PP - (PbS)_8 + PP$ nanokompozitinin, E_{Pb_2} - Pb2-nin, E_{S_2} - S2-nin, E_{C_2} - C2-nin, E_{H_2} - H2-nin tam enerjisidir. $E(PbS)_8 + PP = -67.522995468$ a.v., $E_{Pb_2} = -3.639985028$ a.v. və $E_{S_2} = -7.156810571$ a.v., $E_{C_2} = -5.015905604$ a.v., $E_{H_2} = -1.291132619$ a.v. olduğundan $\Delta E((PbS)_8 + PP) = -1.541300546$ a.v. $\Delta E((PbS)_8 + PP) < 0$ olduğundan $(PbS)_8 + PP$ nanokompoziti stabildir.

(PbS)₈ +PVDF nanokompoziti üçün kompüter hesablamaları və alinmış nəticələrin interpretasiyası

 $(PbS)_8$ +PVDF nanokompozitinin nəzəri modeli kimi iki C₂H₂F₂ polimeri arasında yerləşdirilmiş $(PbS)_8$ nanohissəciyinə baxılmışdır(Şəkil 27.4). Hər C atomundan 4, F atomlarından 7, H atomundan bir, hər Pb atomundan 4 və hər S atomundan 6 valent elektronu olmaqla nanokompozitin 128 sayda elektronu ən aşağı enerjili 64 enerji səviyyəsini doldurur. Hesablamalar nəticəsində $(PbS)_8$ +PVDF nanokompozitinin orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri və nanokompozitə daxi olan atomların effektiv yükləri(Şəkil 28.6.) və s. tapılmışdır. Elektronlar tərəfindən tutulmuş ən yuxarı molekulyar orbitalın enerjisi: $\varepsilon_{TTMO} = \varepsilon_{64} = -$ 9.750834eV. Ən aşağı boş molekulyar orbitalın enerjisi: $\varepsilon_{ABMO} = \varepsilon_{65} = -9.704308 \text{eV}.$ (PbS)₂ +PVDF nanokompozitinin ionlaşma potensialının qiyməti: I_p= - ε_{YTMO} =9.750834eV. Qadağan olunmuş zonanın qiyməti: $\varepsilon_{ABMO} - \varepsilon_{YTMO} = 0.046526 \text{eV}$ fərqi ilə müəyyən olunur. Bu isə (PbS)₈+PVDF nanokompozitinin keçirici material olduğunu göstərir. Möhkəmlik $\eta = \frac{1}{2} (\varepsilon_{ABMO} - \varepsilon_{YTMO})$ düsturu ilə hesablana bilər. $\eta = 0.023263$ a.v. $\eta < 1eV$ olduğundan (PbS)₈ +PVDF nanokompoziti yumsaq material hesab olunur. Ən aşağı boş molekulyar orbitalın enerjisi mənfi işarəli olduğuna görə $(PbS)_8$ +PVDF nanokompozitinin elektrofildir. $(PbS)_8$ +PVDF nanokompozitinin stabilliyi $\Delta E((PbS)_8 + PVDF) = E_{(PbS)_8 + PVDF} - 4 \cdot E_{Pb_2} - 4 \cdot E_{S_2}$ $-3*E_{C_{2}}-6*E_{H_{2}}-2E_{F_{2}}$ düsturu ilə hesablanır. Burada $E(PbS)_{+PVDF}$ - $(PbS)_{8}$ +PVDF nanokompozitinin, E_{Pb_2} - Pb₂-nin, E_{S_2} - S₂-nin, E_{C_2} -C₂-nin, E_{H_2} - H₂-nin və E_{F_2} - F₂-nin tam enerjisidir. $E(PbS)_{a}+PVDF = -83.234074913$ a.v., $E_{Pb_{a}} = -83.234074913$ -3.639985028a.v. və E_{S_2} =-7.156810571a.v., E_{C_2} =-5.015905604a.v., E_{H_2} =-1.291132619a.v. və E_{F_2} =-12.57307174a.v. olduğundan $\Delta E((PbS)_8 + PVDF)$ =-2.286672583a.v. $\Delta E((PbS)_8 + PVDF) < 0$ olduğundan $(PbS)_{8} + PVDF$ nanokompoziti stabildir.

Nəticə. $(PbS)_8$ nanohissəciyi və onun $(PbS)_8 + PP$, $(PbS)_8 + PVDF$ nanokompozisiyalarının elektron quruluşu Genişlənmiş Hükkel metodu ilə öyrənilmişdir. Nanohissəciyin və onun

 $(Au_2S)_{22}$ +PP, $(PbS)_8$ +PVDF nanokompozisiyalarının orbital enerjiləri, ionlaşma potensialı, tam elektorn enerjisinin qiymətləri, nanohissəciyə və onun $(PbS)_8$ +PP, $(PbS)_8$ +PVDF nanokompozisiyalarınına daxi olan atomların effektiv yükləri hesablanmışdır(Şəkil 28.5, Şəkil 28.6, Şəkil 28.7). Hesablamaların nəticələri göstərir ki, $(PbS)_8$ nanohissəciyi və onun $(PbS)_8$ +PP, $(PbS)_8$ +PVDF nanokompozisiyaları yumşaq, elektrofil və stabil keçirici materiallardır. Bu materiallar müxtəlif elektron sxemlərin hazırlanmasında istifadə oluna bilər.

Şəkil 28.4. $(PbS)_8 + PP v \Rightarrow (PbS)_8 + PVDF$ nanokompozitlərinin vizual modelləri

Şəkil 28.5. Atomlarin effektiv yükləri

Şəkil 28.6. Atomlarin effektiv yükləri

Şəkil 28.7. Atomlarin effektiv yükləri

ƏDƏBIYYAT

- 1. Həsənov A.Q. Qrafenin riyazi modelləşdirilməsi və kompüter tədqiqi. BDU-nun xəbərləri, №2, 2011, s.171-179.
- 2. Naoya Kobayasi. Nanotenologiyaya giriş. Rus dilindən tərcümə. Ramazanov M.Ə., Vəliyeva L.İ. Müəllim nəşriyyatı, Bakı 2013, 116s.
- 3. Paşayev F.H., Həsənov A.Q. Atom və molekul fizikasında riyazi metodlar. Müəllim nəşriyyatı, Bakı 2013, 124s.
- 4. Ramazanov M.Ə., Həsənov A.Q. Nanotexnologiyadan laboratoriya işləri. Baki 2009, 224s.
- 5. Məhərrəmov A.M., Ramazanov M.Ə., Vəliyeva L.İ. Nanotexnologiya, Baki 2007, 231s.
- 6. Венер М.В., Цирельсон В.Г.. Компьютерное моделирование супрамолекулярных систем и наноструктур. Москва: РХТУ, 2008, 128с.
- Власов А. И., Назаров А. В. Основы моделирования микро- и наносистем : учеб. пособие – М. : Изд-во МГТУ им. Н. Э. Баумана, 2011. – 144 с.
- Вьюрков В.В., Орликовский А.А., Семенихин И.А., Негров Д.В. Озерин А.Ю. Свинцов Д.А. Математическое и компьютерное моделирование наносистем. Учеб. пособие, Москва – 2011, 152с.
- 9. Дегтяренко Н.Н. Описание программных пакетов для квантовых расчетов наносистем. *Учебное пособие*. М.: МИФИ, 2008. 180 с.
- 10. Дегтяренко Н.Н. Специальные разделы квантово-механических методов расчетов свойств кластеров и наноматериалов: учебное пособие. М.: МИФИ, 2008. 156 с.
- 11. Заводинский В.Г. Компьютерное моделирование наночастиц и наносистем. Институт материаловедения ХНЦ ДВО РАН, 2012, 137с.
- 12. Ибрагимов И.М., Овшов А.Н., Назаров Ю.Ф.. Основы компьютерное моделирование наносистем. Уч.пос., СПб, Изд., «Лань», 2010, 376с.
- 13. Игнатов С.К. Квантово-химическое моделирование молекулярной структуры, физико-химических свойств и реакционной способности, Часть 1, Нижний Новгород, 2006, 82с.
- Красильников П.С., Ревизников Д.Л. Математическое моделирование наносистем: Учебно-методический комплекс — Калуга, Москва: Изд., «Эйдос» 2011. – 220с.
- 15. Минкин В.И., Симкин Б.Я., Миняев Р.М. Теория строения молекул, Ростов на/Д: Феникс, 2010, 560 с.
- 16. Романова Т.А., Краснов П.О., Качин С.В., Аврамов П.В. Теория и практика компьютерного моделирования нанообъектов.

Мультимедийное справочное пособие. Красноярск: ИПЦ КТГУ. 2002, 223с.

- 17. Рыбалкина Мария. Нанотехнологии для всех, Москва 2007, 444с.
- Самарский А.А., Михайлов А.П. Математические моделирование, М.: Наука, 1997, 320с.
- 19. Суздалев И.П. Физико-химия нанокластеров, Наноструктур и наноматериалов.М. КомКнига, 2006, 592с.
- 20. Трубочкина Н.К. Компьютерное моделирование наноструктур и наносистем. Москва: 2011, 70s.
- 21. Учебное методические пособие. Математическое моделирование структуры соединений с помощью пакета программ HyperChem 7.5. Воренеж: 2006, 44с.
- 22. Федеров А.С., и др. Моделирование свойств, электронной структуры ряда углеродных и неуглеродных нанокластеров и их взаимодействия с легкими элементами, Новосибирск, Изд., СО РАН 2006, 220с.
- Abanin D.A., Morozov S.V., Ponomarenko L.A., Gorbachev R.V., Mayorov A.S., Katsnelson M.I., Watanabe K., Taniguchi T., Novoselov K.S., Levitov L.S., and Geim A.K. Giant Nonlocality Near the Dirac Point in Graphene. – Science. – 15 April 2011: Vol. 332 no. 6027 pp. 328–330; DOI: 10.1126/science.1199595.
- 24. Ali R.Ranjbartoreh, Bei Wang, Xiaoping Shen and Guoxiu Wang. Advanced mechanical properties of graphene paper. – Journal of Applied Physics. – 109, 014306 (2011); doi:10.1063/1.3528213 (6 pages).
- 25. Ashkarran Ali Akbar. Synthesis and characterization of gold nanoparticles via submerged arc discharge based on a seed-mediated approach. Journal of Theoretical and Applied Physics 2012, 6:14 http://www.jtaphys.com/content/6/1/14.
- 26. Brian J. Bellott. Synthesis, characterization, and reactivity of volatile compounds for materials applications. Doctor dissertation, University of Illinois at Urbana-Champaign, 2010, 199p.
- Chi-Liang Kuo and Michael H. Huang. Hydrothermal Synthesis of Free-Floating Au₂S Nanoparticle Superstructures. J. Phys. Chem. C 2008, 112, 11661–11666.
- 28. Christopher K. Rowan, Irina Paci. Nanoparticle morphology and aspect ratio effects in Ag/PVDF nanocomposites. Theoretical Chemistry Accounts, 05/2012; 131(1):1-11. DOI:10.1007/s00214-011-1078-6.
- 29. Christopher K. Rowan, Irina Paci. Nanoparticle morphology and aspect ratio effects in Ag/PVDF nanocomposites. Theoretical Chemistry Accounts, 05/2012; 131(1):1-11. DOI:10.1007/s00214-011-1078-6.

- Clifford Y. Tai, Bor-Yuan Hsiao, Hsien-Yi Chiu. Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion. Colloids and Surfaces A: Physicochem. Eng. Aspects 237 (2004) 105–111.
- Guseinov I.I., Mamedov B.A., Unified treatment of overlap integrals with integer and noninteger n Slater-type orbitals using translational and rotational transformations for spherical harmonics, Canadian Journal of Physics, 82(2004)205-211.
- Jang, Myung Wook, Kim, Ju-Young, Ihn, Kyo Jin. Properties of polypropylene nanocomposites containing silver nanoparticles. Journal of Nanoscience and Nanotechnology, Volume 7, Number 11, November 2007, pp. 3990-3994(5).
- Kazu Suenaga & Masanori Koshino. Atom-by-atom spectroscopy at graphene edge. – Nature (2010) doi:10.1038/nature09664; Published online 15 December 2010.
- Liu X., Atwater M., Wang J., & Huo Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces. 2007 Jul 1;58(1):3-7.
- M. Flores-Acosta, R. Pérez-Salas, M. Sotelo-Lerma, F. F. Castillón-Barraza and R. Ramírez-Bon. Optical and Structural Properties of PbS Nanoparticles in Zeolite Na-X. The AZo Journal of Materials Online (ISSN 1833-122X) Volume 1 November 2005.
- Oleg V. Tolochko, Chul-Jin Choi, Albert G. Nasibulin, Katerina S. Vasilieva, D.-W. Lee, D. Kim. Thermal behavior of iron nanoparticles synthesized by chemical vapor condensation. Materials Physics and Mechanics 13 (2012) 57-63.
- 37. Pashaev F.G.. Use of Filter-Steinborn B and Guseinov Q_{ns}^q auxiliary functions in evaluation of two-center overlap integrals over Slater type orbitals. J Math Chem (2009) 45:884–890 DOI 10.1007/s10910-008-9436-x.
- 38. Ramazanov M.A., Pashaev F.H., Nabiev N.S., Gasanov A.G. Quantum mechanical calculation of electronic structure of molecule $C_{60}H$. NAS of Azerbaijan, Jurnal Fizika, CİLD XIV, Vol. №1, pp. 7-9, 2008.
- Wafaa M. S., Al-Khayat, Gerhard Wilde. Characteristics Study of Silicon Nanoparticles Produced by Physical Vapour Deposition. American Journal of Materials Science 2012, 2(6): 210-214 DOI: 10.5923/j.materials.20120206.07.
- 40. Yuan Ming-liang, Tao Jia-hua, Yan Guan-jie, Tan Mei-yi, Qiu Guanzhou. Preparation and characterization of Fe/SiO2 core/shell nanocomposites. Trans. Nonferrous Met.Soc. China 20(2010) 632-636.

MÜƏLLİF HAQQINDA

Həsənov Arzuman Qardaşxan oğlu. 1981-ci ildə ADU-nun tətbiqi riyaziyyat fakültəsinin əyani şöbəsini bitirmişdir. «Nanosistemlərin riyazi modelləşdirilməsi», "Nanoquruluşların kompüter hesablanması" və «Atom və molekul fizikasında riyazi metodlar» fənlərini təhsilin magistraturası pilləsində tədris edir. Molekulların elektron quruluşunun kvantmexaniki hesablanması üçün Sleyter funksiyaları bazisində proqram təminatının hazırlanmasında iştirak etmişdir. Fizika-riyaziyyat elmləri namizədi, 87 elmi işin və ali məktəblər üçün «Nanotexnologiyadan laboratoriya işləri» və "Atom və molekul fizikasında riyazi metodlar" adlı dərs vəsaitlərinin həmmüəllifidir. Müxtəlıf ölkə və beynəlxalq qrant layihələrində iştirak etmişdir. Nəşriyatın direktoru: Dizayn və səhifələnmə: A.Ə. Həsənov Korrektor:

X. A. Həsənov Ü.R.Məmmədova

ARZUMAN HƏSƏNOV

NANOSİSTEMLƏRİN RİYAZİ MODELLƏŞDİRİLMƏSİ VƏ KOMPÜTER HESABLANMASI

"Ləman nəşriyyat poliqrafiya" MMC nəşriyyatında çap olunmuşdur.

Çapa imzalanmış 16.07.2013. Sifariş №160 Kağız formatı 60x84 1/16. Şərti 14,6 ç.v. Tiraj 200.